
Texas Hold’em Poker Bot

Martina Kollárová
kollarova@mail.muni.cz

1 Introduction

This work creates a Poker bot that is able to compete with other bots in the RoboPoker1 competition.
The Texas Hold’em2 variant was chosen, because it is the most popular and has both hidden (cards
in the hand of the players) and shared information (cards on the table). It is also the most commonly
used variant in AI research [1].

1.1 Texas Hold’em Poker Rules

Figure 1: Playing table with initial hidden cards and forced bets.

Figure 1 shows how the game starts. In plays between real players (i.e. face to face), the button
marks the player who is going to deal the cards (shuffle them), but it also sets the position of the
players with the small and big blind. It is usually moved around the table counter-clock wise, so that
players are chosen for the blinds equally. The big and small blinds are forced bets that are used to
prevent the scenario where all players would commonly fold (give up) before anything was played.
The small blind is half the amount of the big blind.

Each of the players has two hole cards which only he can see. Going clock-wise, the players choose
whether to:

call put enough money on the table to match the highest bet

check special case of call when no money needs to be added to continue (a zero-cost
action)

1http://robopoker.org
2https://en.wikipedia.org/wiki/Texas_hold_’em

1

http://robopoker.org
https://en.wikipedia.org/wiki/Texas_hold_'em

fold give up, lose all money he already bet

raise/bet add extra money to the pot

The pot is the money on the table that will be given to the winner of the game. To continue, the
player has to have as much money in the pot as the highest bet so far, otherwise he has to fold. For
the game to continue to the next round, each of the players who want to stay in the game have to
have equal bets in the pot. Even if nobody raises in the first round, the players have to put in at least
the big blind in to stay in the game.

The beginning of the game, when no shared (visible cards to all) are on the table, is called preflop.
When the betting for that round is finished, the dealer puts three shared cards on the table, and the
same is repeated—this round is called the flop. The betting continues same as before, and afterwards
the dealer reveals a fourth card—the turn, and after another round of bets he will add the last fifth
card, which is called the river.

If only one player remains, he has automatically won. But if there are more players left at the end
(called showdown), they show their cards and compare their value, according to Figure 2. The rules
about special cases (when two players have a similarly ranked card) can be complicated,3 but this is
already handled in RoboPoker.

Figure 2: Poker hand ranking—the higher the better.

3https://en.wikipedia.org/wiki/Texas_hold_’em

2

https://en.wikipedia.org/wiki/Texas_hold_'em

2 Problem Analysis

2.1 Existing Implementations

Bots are usually forbidden in online games, since even though they are worse than the professional
players, they can play decently against the average players. They are not limited by sleep or fatigue,
and can play multiple games simultaneously, which are considered unfair advantages.

The existing bots are usually not open-source, since they are created to make money (and spend
a vast amount of effort going past things like CAPTCHA and pretending to be humans so that the
servers don’t recognize them as bots, since they are usually not allowed). There are frameworks and
tools available for it, but the strategy is usually not published.

2.1.1 OpenHoldemBot

The OpenHoldemBot4 is a framework for creating Poker bots that contains tools for creating a bot for
online Poker games with humans. It mostly deals with screen scrapping, analyzing the game play and
functions that are not necessary for us, since we don’t need to be able to work with the user interface of
online games and the rest is either provided by RoboPoker’s SDK or more compact external libraries
(like python-pokereval).

2.1.2 Annual Computer Poker Competition

An alternative competition to RoboPoker is the Annual Computer Poker Competition5 (ACPC), which
also provides an XML protocol trough which players can compete. It is well known and attracts both
AI researchers and hobbyists, but it couldn’t be chosen for this project, because it is only run annually
in June.

3 Implementation

3.1 RoboPoker

The RoboPoker competition defines a REST API6 trough HTTP POST with which the bots can
communicate. This makes it possible to implement the bot in any kind of programming language. A
request looks as follows:

name=bot01&pocket=AH+8C&ac t i on s=f o l d%0Aca l l%0Ara i se
&s t a t e=%3C%3Fxml+ve r s i on%3D%221.0%22+%3F

The bot has to just parse the input, which contains the state of the game as seen from the player
in XML (the state item), make a decision based on them and return on of the possible actions, for
example raise. The name field allows the bot to choose a strategy based on it, so that multiple types
of bots can be hosted on the same URL.

RoboPoker also provides and SDK—it allows to run the bot against other test bots locally, without
having to add it to the competition on the website. Therefore, it is not necessary to implement the
game engine that would execute the game and decide on the winner.

4https://code.google.com/p/openholdembot/
5http://www.computerpokercompetition.org
6http://robopoker.org/about/api/

3

https://code.google.com/p/openholdembot/
http://www.computerpokercompetition.org
http://robopoker.org/about/api/

3.2 Hand Strength

The hand strength computation is done by an external Python module pokereval.7 It contains pre-
computed probabilities that a certain hand, in combination with the cards on the board, will win
against one opponent.8 A similar algorithm is also described in the work by Castillo [2].

Originally, I expected that the algorithm used to create the pokereval library didn’t count with
the possibility that the community cards might be well suited for my bot, but even better for the
opponent. For example, if there are four cards of the same suit on the table and I don’t have a card
of that suit (let’s say I have three of a kind), it is very likely that the opponent will have a card of
that suit and win with the flush. I have designed and mostly implemented a rollout simulator, which
would try to compute this by randomly sampling a few thousand possibilities as to what the opponent
could have in his hand and seeing if I would win against him. However, I have afterwards found out
that the algorithm already counts with this and my simulator isn’t necessary.

3.3 Effective Hand Strength And Pot Odds

Pot odds are defined [4] as:

C =
C

C + P
,

where C is the amount of money that is needed to call or raise and P is the amount of money in the
pot (i.e. on the table). The number is in the range from 0 to 1 and shows whether it’s “worth it” to
continue—a small number means the cost of the call is small, compared to the amount that can be
won; a number closer to one means that you have to put in a lot of money to win the pot and you
should continue only when the chances of winning seem high. For example, if there are already $100
in the game and we need to add $10 to call (or we can add $10 to raise the bet), the pot odds are
0.09.

Since the more opponents are there in the game, the more probable it is that somebody will have
a better hand, the hand strength needs to be de-vaulated depending on the number of players, which
is currently done as

hand strengthn,

where n is the number of opponents (hand strength is a number ranging from 0 to 1). This is
called effective hand strength. In other works [2] it also uses the probabilities that the hand gets worse
or better, but in this case this is already calculated into the hand strength by the pokereval library.

Originally, it was also using the number of followers (players who still have the chance to raise
after the bot’s turn) and the number of raises in the round to de-valuate the hand strength, similar
to the equation used in Findler’s work [3], but it was showing worse results and was discontinued.

The result is that the bot calls or raises when the pot odds are smaller than the effective hand
strength:

C

C + P
≤ hand strengthn

If the above is true, it will call or raise. Therefore if the hand is not very good, but the pot odds
are good (only a little money has to be added to win a lot of money), the bot will call or raise (which
one actually depends on a hand strength threshold). For example, a hand strength of 0.6 (meaning
that the player should win 60% of the time against a single opponent) seems good, but against 4
opponents it becomes 0.1296. However, if the player only has to add $10 to call and there are $100
on the table, the pot odds are 0.09 which makes it a reasonable risk and the bot should continue.

7https://pypi.python.org/pypi/pokereval/
8http://www.suffecool.net/poker/evaluator.html

4

https://pypi.python.org/pypi/pokereval/
http://www.suffecool.net/poker/evaluator.html

3.4 Probability Triples

The bot uses the probability triples similarly as the work by Castillo [2]. With it, the main decision
making is made by the probability triple generation function and the rest can be abstracted away, which
made it possibly to drastically simplify the decision logic of the bots and remove code duplication. It
also makes randomization of results simple.

A probability triple (PT) is an ordered list of three values, PT = (f, c, r) such that f + c+r = 1.0.
Each value represents the likelihood that the next action is a fold (f), a call (c), or a raise (r),
respectively.

The function that chooses the action based on the triple is shared among the different bot strategy
implementations, so some details (e.g. some actions not being possible in the current state) can be
handled by it. If the raise action was chosen, but isn’t possible, it will try to call. If calling is not
possible, it will try to check. If checking is not allowed, it will fold. Thanks to this, none of the bots
will fold when they can check, which is an action with no cost.

3.5 Strategies

The basic strategies are as follows:

random choose to fold/call/raise with equal probabilities (if “check” is available and
“fold” was chosen, check)

simple always call if we can, never raise

threshold raise if hand strength is above some threshold, call if it is lower but higher
than another threshold

The strategies that use the effective hand strength and pot odds described in Section 3.3 are
referred to as smart. The variations use different thresholds for deciding on whether to call or raise.
The main distinction is between the aggressive/passive strategies (raising often or little) and the
loose/tight strategies (playing many hands or only the best ones) [5]. To implement the loose and
tight variations, there is another threshold constant for each strategy—if the bot is in pre-flop and the
hand strength is higher than that threshold, he will play the card.

agressive-loose raise even if cards are not so good; in preflop play cards that are not too great

agressive-tight raise even if cards are not so good; in preflop only play cards that are very
good

passive-loose raise only if cards are very good; in preflop play cards that are not too great

passive-tight raise only if cards are very good; in preflop only play cards that are very good

average smart has threshold values in the middle of the aggressive/passive and loose/tight

randomized same as as “average smart”, but choose a different action than normally, with
some small probability

5

4 Usage

To install the dependencies for the bot, use:

$ pip i n s t a l l −u −e .

The bot can be executed by running

$ python wsgi . py

which will cause it to listen at the URL http://localhost:8080. It requires that the HTTP
POST parameters described in Section 3.1 are specified. The name parameter will decide what the
strategy is, and can be one of random, simple, threshold, agressive-loose, agressive-tight, passive-
loose, passive-tight, smart, randomized-smart, as described in the previous section. Thanks to this
parameter, the single URL can act serve as multiple bots at the same time.

RoboPoker’s SDK provides tools to test the bot locally, which can be done by editing the file
hand players.list and adding a line as:

3 smart 200 http http :// l o c a l h o s t :8080
4 ag r e s s i v e−t i g h t 200 http http :// poker−mkol laro . rhc loud . com

where the first column is the sitting position (has to be unique in that file), second is the name
of the bot (strategy), third is the amount of money the player brings in at the beginning, then the
protocol and URL. The first line in this example points to our locally running bot, the second is the
publicly available copy of it. Then you can generate a random deck of cards with create.sh and play
it with a humanly readable output as follows:

. / c r e a t e . sh | . / play−human . sh

An example of such output is in Listing 1. The first section shows what are the hidden cards of the
players (this is meant for debugging, it’s usually not accessible). The PREFLOP section shows what
are the initial forced bets (small blind and big blind) and what were the actions of the bots (ordered
by time). The section POTS shows how much money is on the table at the end of the round. The
sections FLOP, TURN and RIVER work in a similar way as PREFLOP. In SHOWDOWN it shows
the winner and his winning combination name and cards—the first number of a card is its rank, the
second is the suit (H is hearts, S is spades, C is clubs, D is diamonds). In this case, the bot with the
aggressive and tight strategy won with a pair of cards (two cards with the rank 7).

5 Evaluation and Testing

After the project was started, it was found out that the RoboPoker competition was discontinued.
The creators were contacted and it was started again, but most of the enlisted bots seem to be non-
functional. My bot was first in the rankings for many weeks. After I created a post9 about it, two
additional players joined, and some of the creators of the older bots were contacted. However, even
after that, there seem to be only four four bots that are able to play on a basic level, but one of them
is currently beating mine, as shown in Figure 3. The bot used in the competition in the average smart
bot. Even though other version of the bot showed better results locally, the website didn’t allow me
to change it (it is still a beta version, adding another bot would require that I create another account
and deploy the bot service on another URL).

The strategies were also compared among each other, as shown in Figure 4. It shows the money
that was left to the bots after 3000 rounds, when each of them started with $200 (the starting money
is included in the chart, so a bot with less than $200 left lost money). The results are as expected—the
bots with the smart strategy are performing much better than the others.

9http://reddit.com/r/programming

6

http://localhost:8080
http://reddit.com/r/programming

DEAL
simple 3H TD
agr e s s i v e−t i g h t 7C 2S
smart 2D TC

PREFLOP
simple [1 9 0] sma l l b l i nd [1 0]
ag r e s s i v e−t i g h t [1 8 0] b i g b l i nd [2 0]
smart [2 0 0] f o l d [0]
s imple [1 8 0] c a l l [2 0]
ag r e s s i v e−t i g h t [1 8 0] check [2 0]

POTS [4 0]
FLOP 5H3CKS
simple [1 8 0] check [0]
ag r e s s i v e−t i g h t [1 8 0] check [0]

POTS [4 0]
TURN 7D
simple [1 8 0] check [0]
ag r e s s i v e−t i g h t [1 4 0] bet [4 0]
s imple [1 4 0] c a l l [4 0]

POTS [1 2 0]
RIVER 4H
simple [1 4 0] check [0]
ag r e s s i v e−t i g h t [1 0 0] bet [4 0]
s imple [1 0 0] c a l l [4 0]

POTS [2 0 0]
SHOWDOWN
agre s s i v e−t i g h t wins 200 with Pair [5H, 3C, KS, 7D, 4H, 7C, 2S]

Listing 1: Example output of a game

The Figure 5 shows a similar comparison, but of the variations of the smart strategy, in addition
to the threshold bot. Again, it is the result after 3000 rounds of poker, with $200 as the starting
money. It shows that the smart bot with the aggressive and tight strategy is winning against this
group of players. This is not surprising, because it is often recommended [5] to play only a few best
hands (unless the player is the small/big blind) and raise often. The randomized strategy is not very
useful against deterministic bots as shown here—its purpose is to diminish the predictability of the
bot, so it cannot be easily categorized by an opponent modeller or human.

Additionally, the project contains a basic set of unit tests, which use nosetests,10 mainly for the
parsing of the state represented in XML.

10https://nose.readthedocs.org

7

https://nose.readthedocs.org

Figure 3: Results of RoboPoker competition

Figure 4: Comparison of bots

8

Figure 5: Comparison of Smart bot variants and Threshold bot

6 Conclusion

The bot was created in Python and published11 under the Apache 2 licence, so that people can easily
fork it and write their own strategy, without having to implement details like state parsing. Anyone
can play with the bot trough the HTTP API even without participating in the RoboPoker competition,
since it is publicly available as a service.12

The bot has ranked as second in the RoboPoker competition with the average “smart” strategy
and provides multiple variations of it for comparison, of which the best was found to be the one using
the aggressive and tight strategy.

The bot is currently only rule based, with optionally random decisions. Since the RoboPoker’s
API doesn’t support result collection and fixing it would be a difficult task, the opponent modelling
wasn’t implemented. In addition to that, the bots in the competition don’t seem to be very smart.
The research on opponent modelling could be done as a Bachelor’s or even Master’s thesis.

11https://github.com/karinqe/poker
12http://poker-mkollaro.rhcloud.com/

9

https://github.com/karinqe/poker
http://poker-mkollaro.rhcloud.com/

References

[1] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Poker as a testbed for ai
research. In RobertE. Mercer and Eric Neufeld, editors, Advances in Artificial Intelligence, volume
1418 of Lecture Notes in Computer Science, pages 228–238. Springer Berlin Heidelberg, 1998.

[2] Maria de Lourdes Peña Castillo. Probabilities and simulations in poker. Master’s thesis, University
of Alberta, 1999.

[3] Nicholas V. Findler. Studies in machine cognition using the game of poker. Commun. ACM,
20(4):230–245, April 1977.

[4] Kevin B. Korb, Ann E. Nicholson, and Nathalie Jitnah. Bayesian poker. In In Uncertainty in
Artificial Intelligence, pages 343–350. Morgan Kaufman, 1999.

[5] D. Sklansky. The Theory of Poker. Two Plus Two Pub., 1999.

10

	Introduction
	Texas Hold'em Poker Rules

	Problem Analysis
	Existing Implementations
	OpenHoldemBot
	Annual Computer Poker Competition

	Implementation
	RoboPoker
	Hand Strength
	Effective Hand Strength And Pot Odds
	Probability Triples
	Strategies

	Usage
	Evaluation and Testing
	Conclusion

