
PA026 – Training self-driving cars using genetic

algorithm

Peter Hutta

Spring 2019

1 Introduction

The goal of this project was to create a program which would train agents/cars to

drive using genetic algorithm (GA). It would be implemented in Unity 3D game

engine. Users would be able to interact with the training process, change hyper-

parameters of underlying algorithm and properties of agents.

There are several working implementations of this topic [1, 2, 3]. However, all of

them use neural network with static structure and GA is used to train its weights.

My implementation used algorithm called NeuroEvolution of Augmenting

Topologies (NEAT), which evolves weights and topology at the same time. This

project also uses multiple training and testing tracks.

2 NEAT algorithm

NEAT is a method for evolving artificial neural networks using GE [4]. It evolves

both weighting parameters and structure of networks, trying to find balance

between fitness of the solution and their diversity.

Networks in the initial population are as simple as possible, often having no

connections at all (input and output neurons are not connected). During evolution,

algorithm is adding new neurons and connections between existing ones. This leads

to having small resulting networks.

In ordinary GE it can happen that two individuals encode the same behavior but

with different genotype. When subjected to crossover, their offspring is likely to be

worse than their parents. This phenomenon is called competing conventions. In

NEAT this is solved by keeping historical markings of new structures. It is assigned

unique number and all mutations containing such structure are assigned the same

number. During crossover genes with matching numbers are kept and differing

genes are exchanged.

NEAT also works with concept of species. It is a subdivision of population into

multiple groups of individuals, which is based on the similarity of individuals.

Probability of crossover within one specie is much higher than between different

species. Promotion of mating of similar parents causes, that children are less likely

to be worse than their parents.

3 Implementation

Project was implemented in C# in Unity 2018.3.2f1. I have chosen SharpNEAT as

a complete implementation of NEAT written in C# / .NET created by Colin Green

[5].

Each agent has attached CarController component to it, which acts as its brain and

contains underlying neural network. During each update, ray is cast in five different

directions (front, front left, left, front right, right). If the ray hits a wall a value is

computed using following formula:

𝑖𝑛𝑝𝑢𝑡 = 1 −
𝑤𝑎𝑙𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠𝑒𝑛𝑠𝑜𝑟_𝑟𝑎𝑛𝑔𝑒

These five values are then used as an input to the neural network. Output layer

consists of two nodes and both are transformed to the range <-1,1>. First one

together with rotation speed indicates rotation angle. Second one is used as an

acceleration.

Fitness of each individual is computed in multiple steps. It takes cars position,

percentage of traveled road pieces and time spend on the right side into

consideration. At first, its position each lap is used in exponential decay formula,

penalizing slow cars:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = ∑ 100 ∗ 𝑒−0.02∗(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖−1)

𝑙𝑎𝑝𝑠

𝑖

Then it is computed right side ratio, which takes number of frames spend on sides

of the road and penalizes left side:

𝑟𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡 =
𝑓𝑟𝑎𝑚𝑒𝑠𝑟𝑖𝑔ℎ𝑡

𝑓𝑟𝑎𝑚𝑒𝑠𝑟𝑖𝑔ℎ𝑡 + 𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∗ 𝑓𝑟𝑎𝑚𝑒𝑠𝑙𝑒𝑓𝑡

Resulting fitness is computed using these values and percentage of traveled pieces

during last lap:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 +
100 ∗ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑖𝑒𝑐𝑒

𝑡𝑟𝑎𝑐𝑘_𝑙𝑒𝑛𝑔𝑡ℎ
) ∗ max (𝑟𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡, 0.2)

After car hits a wall it is no longer allowed to drive and it is stopped.

Users can interact with the learning process. They can set multiple algorithm

parameters (population size, specie count, generations per track …) and car pro-

perties (max speed/acceleration, sensor range …). It is also possible to pause/restart

computation, run evaluation and run best individual. Each species of cars has

assigned unique color to it for graphical recognition.

4 Evaluation and testing

During training, it is used 11 unique tracks of differing width and shape. After each

pass, their order is randomized. Users can set number of generations and seconds

spend on each track.

There are 6 testing tracks. They are combination of narrow/normal/wide and

clockwise/counterclockwise shapes.

After each testing track, results are saved in csv file with various statistical data.

Also, whole generation is ranked and after evaluation the individual with best

average rank is outputted to file Build\Car Experiment_Data\best_gen#.xml.

5 Results

Training process was carried out each time with different parameters and it ran over

several hundred generations. The latest generation underwent testing after each

hundred generation. Then it was average ranked by individual’s fitness gained on

related testing track. First one was outputted as the best individual out of the whole

generation.

The best configuration found so far is already preselected. After first evaluation

there was an individual with average rank 1 (rounded down) and it didn’t crash on

neither testing track. Its gene is encoded in file car.champ.xml and can be viewed

on the picture below.

Also, I have found out that training is worth running only for 100-200 generations.

After that average rank is increases, fitness decreases and more cars crash to wall.

One of the possible ways how to improve this project is to use version of NEAT

called HyperNEAT. It is used to evolve large scaled neural network, which would

allow the use of convolutional networks and Synthia dataset. Synthia is a collection

of photo-realistic frames rendered from virtual city coming with sematic

annotations. It has variety of dynamic objects, multiple seasons and different

lighting and weather conditions.

6 Installation

Release build for Windows (64-bit) can be launched from Build\Car

Experiment.exe. Alternatively, unity project in pa026-project can be opened using

Unity 2018.3.2f1. After opening scene pa026-project\Assets\CarExperiment\

Scenes\Scene1.unity. it is possible to launch development build.

You can copy configuration file of best individual (car.champ.xml) to Unitys

persistent data path [6] (%userprofile%\AppData\LocalLow\DefaultCompany\Car

Experiment on Windows) to run it for yourself.

7 References
1. https://ashwinvaidya.com/blog/self-driving-car-using-genetic-algorithm-in-unity/

2. https://github.com/ArztSamuel/Applying_EANNs

3. https://tutorials.retopall.com/index.php/2019/03/21/self-driving-cars-3d-simulation/

4. https://www.cs.ucf.edu/~kstanley/neat.html

5. https://sharpneat.sourceforge.io/

6. https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

https://ashwinvaidya.com/blog/self-driving-car-using-genetic-algorithm-in-unity/
https://github.com/ArztSamuel/Applying_EANNs
https://tutorials.retopall.com/index.php/2019/03/21/self-driving-cars-3d-simulation/
https://www.cs.ucf.edu/~kstanley/neat.html
https://sharpneat.sourceforge.io/
https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

