Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Speech and Sound Use in a Remote Monitoring System for Health Care

M. Vacher J.-F. Serignat S. Chaillol D. Istrate V. Popescu

CLIPS-IMAG, Team GEOD Joseph Fourier University of Grenoble - CNRS (France)

Text, Speech and Dialogue 2006 11th to 15th of September

Page 1/26

TSD 2006

Michel Vacher

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Outline

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Outline

Motivation The Medical Remote Monitoring Speech and Sound Corpora

he Real-Time Architecture The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

Extracted informations through Sound Analysis :

- patient's activity: door lock, phone, "It's hot!"...
- patient's physiology: cough...
- distress situation: scream, glass breaking, "Help me!"...

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Outline

Motivation The Medical Remote Monitoring Speech and Sound Corpora

ne Real-Time Architecture The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Speech Corpus

The "Normal-Distress" corpus :

- 21 speakers
 - 11 men, 10 women
 - 20 years<age<65 years</p>
- French
- 64 normal situation sentences
 - "Bonjour" (Good morning)
 - "Où est le sel?" (Where is the salt)
- 64 distress sentences
 - "Au secours!" (Help me)
 - "Un médecin vite!" (Doctor quickly)
- 2,646 audio speech files
- duration: 38 mn
- sampling rate: 16 kHz

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Sound Corpus

- 7 sound classes:
 - normal sounds: door clapping, phone ringing, dishes...
 - abnormal sounds: breaking glasses, falls, screams
- 1,577 audio sound files
- duration: 20 mn
- sampling rate: 16 kHz

Class of sound	% of the corpus		Average of
	(duration)	(number)	duration
Dishes	6%	10.4%	402 ms
Door lock	1%	12.7%	36 ms
Door slap	33%	33.2%	737 ms
Glass breaking	6%	5.6%	861 ms
Ringing phone	40%	32.8%	928 ms
Scream	12%	4.6%	1,930 ms
Step sound	2%	0.8%	2,257 ms

Page 7/26

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusior

The end

Noisy Corpus

- Signal to noise ratio (SNR) : 0, +10, +20, +40dB
- Experimental HIS Noise :
 - non stationary
 - recorded inside experimental apartment

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Outline

otivation The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

Data Acquisition Card: 200 ksamples/s – 8 differential channels Sampling rate: 16 ksamples/s for each channel

Page 10/26

TSD 20

Michel Vacher

CLIPS-IMAG

Page 11/26

TSD 20

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Outline

Motivation The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

XML Output

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization

The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Detection + Speech/Sound Segmentation

- Detection [1]:
 - Wavelet Tree Detection
 - Equal Error Rate: (ROC curves)
 - EER = 6.5% if SNR = 0dB, 0% if $\textit{SNR} \geq +10\textit{dB}$
- Segmentation
 - frame 16 ms overlap 8 ms
 - GMM, 24 Gaussian models
 - 16 LFCC coupled with energy
 - Error Segmentation Rate "cross validation protocol":

SNR	ESR gobal	Speech	Sound
+40 <i>dB</i>	4.1%	0.8%	9.5%
+20 <i>dB</i>	3.9%	0.8%	9.1%
+10 <i>dB</i>	3.9%	1.5%	7.9%
0dB	14.5%	21.0%	3.6%

[1] M. Vacher et al., Sound Detection and Classification through Transient Models using Wavelet Coefficient Trees, EUSIPCO, 20th September 2004.

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization

The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusior

The end

Sound Classification for Medical Remote Monitoring (1/2)

- a more complete sound corpus, a new class: object falls
- adapted to HMM training and classification: one sound per file
- 1,315 files, 25 mn

Class of sound	% of the corpus		Average of
	(duration)	(number)	duration
Dishes	5.3%	12.4%	380 ms
Door lock	27.2%	12.5%	3,150 ms
Door slap	22%	26.2%	950 ms
Glass breaking	12.3%	8.2%	1,690 ms
Object falls	5.4%	5.5%	1,150 ms
Ringing phone	11.7%	19.4%	700 ms
Scream	13%	7.2%	2,110 ms
Step sound	3.7%	8.4%	450 ms
	Mict	hel Vacher	CLIPS-IMAG

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization

The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Sound Classification for Medical Remote Monitoring (2/2)

- analysis window 16 ms overlap 8 ms
- 12 Gaussian models
- 16 LFCC with Δ and ΔΔ
- GMM or 3 state HMM
- "cross validation protocol"
- Error classification rate:

SNR	GMM	HMM
$\geq +50 dB$	3.2%	2%
+40 <i>dB</i>	10.2%	9%
+20 <i>dB</i>	16.5%	10.8%
+10 <i>dB</i>	12.6%	15.4%
0 <i>dB</i>	23.6%	30%

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization

The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

XML Output

Speech: RAPHAEL analysis is initiated

<appli:segmentation description="appli audio"> Module 2: seg Anorodate> |

<appli:reconnaissance description="appli audio"> </pičes>Cuisine</pičes> <horodate>1-12-2005 à 15:19:20</horodate> <résultat<un docteur vite</resultat> </appli:reconnaissance>

sentence recognized by RAPHAEL

Page 17/26

TSD 200

Michel Vacher

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization

The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Acquiring Front Panel

Page 18/26

TSD 20

Michel Vacher

3b

SYSTEM (RAPHAEL)

XML Output

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis Syste

The Speech Recognizer RAPHAEL

Conclusion

The end

RAPHAEL (2/3)

TSD 200

Michel Vacher

CLIPS-IMAG

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

RAPHAEL (3/3)

Acoustic models:

- training with large corpora Braf80, Braf100, Braf120
- large number of French speakers more than 200
- Dictionary: 11,000 words (French) (Speech Assessment Methods Phonetic Alphabet)
- ▶ Language model: n gram, $n \in \{1, 2, 3\}$
 - extraction from the WEB and "Le Monde" corpora
 - optimization for distress sentences

Speech a	and	Sound
Ana	alys	is

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Recognition Results

all the sentences of our corpus

5 speakers

Corpus	Recognition Error	
Normal Sentences	False Alarm Sentence "Quel temps fait-il dehors" / "Quel temps fait-il de mort"	6%
Distress Sentences	Missed Alarm Sentence "Faîtes vite" / "Equilibre" "A moi" / "Un grand"	16%

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Conclusion

- Sound classification for distress detection.
- Speech recognition allowing call for help.
- Real-Time operation on an operating system without real-time capacity.
- Speaker independence of the ASR system.
- For 10dB and upper: errorless detection and segmentation error below 5%.

Outlook

- Improvement of sound classification through HMM
- Development of a complete acoustical analysis system for life-sized tests.

Michel Vacher

Motivation

The Medical Remote Monitoring Speech and Sound Corpora

The Real-Time Architecture

The Global System Organization The Sound Analysis System

The Speech Recognizer RAPHAEL

Conclusion

The end

Detection and Speech/Sound Segmentation in a Smart Room Environment

Thank you for your attention.

Page 24/26

TSD 200

Michel Vacher

Michel Vacher

Appendix For Further Reading Other

For Further Reading I

D. Istrate et al.

Information Extraction From Sound for Medical Telemonitoring,

IEEE Trans. on Information Tech. in Biomedicine Vol. **10**, issue 2, pp. 264-274, 2006.

M. Vacher, D. Istrate.

Sound detection and classification for medical telesurveillance,

BIOMED'2004 Proceedings, ACTA PRESS, pp. 395–398, 2004.

D. Istrate, M. Vacher.

Détection et classification des sons : application aux sons de la vie courante et à la parole, 20th GRETSI Proceedings, Vol. 1, pp. 485-488, 2005.

Michel Vacher

Appendix For Further Readin Other

Acknowledgement I

This study is a part of the DESDHIS-ACI "Technologies pour la Santé" project of the French Research Ministry. This project is a collaboration between the CLIPS laboratory, in charge of the sound analysis, and the TIMC laboratory, in charge of the medical sensor analysis and data fusion.

CLIPS and TIMC are 2 laboratories of the IMAG institute. IMAG has funded the implementation of the habitat used for our studies through the RESIDE-HIS project.