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Topic modelling

organize and understand large collections of documents

text mining

discover uknown topical patterns in documents

topic – group of words representing the information

applications
I recommender systems
I document/book classification
I bio-informatics (interpret biological data)
I opinion/sentiment analysis
I chatbots, topic tracking
I text categorization

vs. topic classification – categorize documents into set of topics
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Recommender systems

recommend the best product for user

clusters of users, based on preference

clusters of products

Netflix prize
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Bio-informatics

categorize patients to risk groups, based on text protocols

detect common genomic features, based on gene sequence data

group drugs by diagnosis
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Latent Semantic Analysis

vector representation of documents

compare by vector distance

document = bag of words

topic = set of words

applications:
I data clustering, document classification
I term relations (synonymy, polysemy)
I cross language document retrieval
I word relations in text
I similarity in multi choice questions
I prior art in patents
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LSA – step 1

count term-document matrix (word frequency in documents)

rows = words, columns = documents

sparse matrix
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LSA – step 2

weighting matrix elements

most popular tf–idf

term occuring in many documents is not interesting for analysis
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LSA – step 3
Singular Value Decomposition
matrix factorization (reduce dimensions, throw away noise)
cluster close vectors (documents and terms)
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Latent Dirichlet Allocation
statistical model
each document is a mix of topics
LDA discovers topics and their ratio
each word in document was generated by one of the topics
applications:

I topic relations
I content recommendation
I group/community overlapping
I document topic changes
I genetics (ancestral populations)
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Example

Document 1: I like to eat broccoli and bananas.
Document 2: I ate a banana and spinach smoothie for breakfast.
Document 3: Chinchillas and kittens are cute.
Document 4: My sister adopted a kitten yesterday.
Document 5: Look at this cute hamster munching on a piece of broccoli.

Example

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching
Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster

Example

Document 1 and 2: 100% Topic A
Document 3 and 4: 100% Topic B
Document 5: 60% Topic A, 40% Topic B
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LDA process

pick fixed number of topics

for each document, randomly assign topic to each word

improve, for each document d:
I for each word w and topic t count:
I all topic assignments are correct, except for current word
I p(topic t|document d) – how many words in document have topic?
I p(word w |topic t) – how many assignments to topic for word?
I new topic: probability p(topic t|document d)× p(word w |topic t)

repeat and reach almost steady state

Adam Rambousek IA161 NLP in Practice 07 – Topic identification, topic modelling 14 / 23



Topic Labeling

represent topic with human-friendly label

top N words from the list

find Wikipedia article based on word list

document summarization from topic documents
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Topic Coherence
measuring score for single topic quality by semantic similarity between
words in topic

Segmentation – segment topic into word pairs
Probability Estimation – probability of words in documents, based on
reference corpus
Confirmation Measure – ”quality” of word subsets based on
probabilities
Aggregation – compute single score
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Gensim
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Gensim – LSA

gensim.models.lsimodel.LsiModel(corpus=None,

num topics=200, id2word=None, chunksize=20000, decay=1.0,

distributed=False, onepass=True, power iters=2,

extra samples=100)

chunksize – number of documents in memory (more documents,
more memory)

decay – newly added documents are more important?

power iters – more iterations improve accuracy, but lower
performance

onepass – False to use multi-pass algorithm, for static data increase
accuracy
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Gensim – LDA
gensim.models.ldamodel.LdaModel(corpus=None,

num topics=100, id2word=None, distributed=False,

chunksize=2000, passes=1, update every=1,

alpha=’symmetric’, eta=None, decay=0.5, offset=1.0,

eval every=10, iterations=50, gamma threshold=0.001,

minimum probability=0.01, random state=None, ns conf=None,

minimum phi value=0.01, per word topics=False)

chunksize – number of documents in memory (more documents,
more memory)

update every – number of chunks before moving to next step

chunksize=100k, update every=1 equals to chunksize=50k,
update every=2 (saves memory)

decay – newly added documents are more important?

alpha, eta – preset expected topics and word probability for start

eval every – log perplexity is estimated after x updates (lower
number, slower training)
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Gensim – LDA parameters

Alpha – similarity of documents.
Low value: documents are mixture of few topics.
High value: documents are represented by more topics, i.e. more
similar.

Beta – similarity of topics.
Low value: topics are created by more unique words.
High value: topics contains more words in common.
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