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NLP Centre, FI MU, Brno

September 15, 2022
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Opinion mining, sentiment analysis, emotion AI

Example 1:

So boring. I enjoyed the first book but this one really didn’t work
for me. The story, characters, and relationships all fell flat.

Example 2:

Lair of Dreams like everything else Miss Bray writes is mind-
boggling. It’s big. It’s insanely atmospheric and it’s creeptastic.1

this book: boring
first book: enjoyed
this book: did not work
story: flat
characters: flat
relationships: flat

Lair of Dreams: mind-boggling
LoD: big
LoD: insanely atmospheric
LoD: creeptastic

1both examples from goodreads.com
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Opinion mining, sentiment analysis

Opinion mining / sentiment analysis / emotion AI:

Given a set of subjective texts that express opinions about a certain
object, the purpose is to extract those attributes (features) of the
object that have been commented on in the given texts and to
determine whether these texts are positive, negative or neutral.
[Dinu and Iuga, 2012]

Z. Nevě̌rilová IA161 NLP in Practice 01 – Opinion mining, sentiment analysis 4 / 23



Automatic opinion mining: why?

many subjective texts exist

mostly because of social media
I people express their opinions in texts
I one’s opinions influence others’ opinions
I aggregation of opinions

review sites influence customer behavior (decision making)

framing in news (“freedom fighters” vs. “terrorists”)

emotions make part of a decision process (see [Minsky, 2007])

brand sentiment analysis is vital for companies, services, and
celebrities

“Opinions” are key influencers of our behaviors. [Liu, 2012]
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Opinion mining: applications
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Opinion mining: related applications

document sentiment classification:
This document contains a lot of negative statements.

sentence subjectivity classification:
This sentence is objective.

aspect-based opinion summarization/aggregation:
Most customers of your company think that the communication is not
good.

mining comparative opinions:
Many people think that iPhone is better than SG.

utility or helpfulness of reviews:
This review is useless.

sarcasm detection:
I truly love to spend a night in this hotel.

toxic speech detection:
No skills. Shut it down.

cross-lingual opinion mining
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Problem definition

What is an opinion?

an evaluating proposition: Linux is great.

a comparative proposition: Linux is better than Windows.

An opinion is simply a positive or negative sentiment, view, at-
titude, emotion, or appraisal about an entity or an aspect of the
entity from an opinion holder. [Liu, 2012]

entity e is a product, person, event, organization, or topic: iPhone, Biden,
Microsoft . . .
aspect a (feature) is a component of e or attribute of e: battery, price,
appearance, communication skills . . .
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Problem definition

opinion = (ej , ajk , soijkl , hi , tl), where

ej is a target entity.

named entity recognition

ajk is an aspect/feature of the entity ej .

information extraction

soijkl is the sentiment value of the opinion from the opinion holder hi
on feature ajk of entity ej at time tl .

sentiment identification

hi is an opinion holder.

information extraction

tl is the time when the opinion is expressed.

information extraction

not just one problem

anaphora resolution + synonym matching [ + machine translation]
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Problem granularity

Generally, find structure in unstructured data (text)

document level opinion mining: The document is negative.

sentence level: The sentence is negative.

object/entity and feature/aspect level: iPhone is expensive.

Classification task:

2-classes: positive/negative

3-classes: positive/negative/neutral

5-classes: polarity + intensity . . .
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A hard problem (sometimes)

opinion mining in tweets is relatively easy (short texts, hashtags)
usually 3-classes classification for each tweet
opinion mining in reviews is harder but still the form contains aspects
and the reviewer has to mark the review positive/negative
usually 2-classes classification for each aspect (e.g. high price)
opinion mining in discussions, comments, blogs is very hard

sentiment lexicon

evaluative words: nice, cool, shit, bad. . .
SentiWordNet [Baccianella et al., 2010]

Positive: 0 Objective: 0.125 Negative: 0.875
blue = filled with melancholy and despondency
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A hard problem (sometimes) II
evaluative word aspect sentiment

thin phone good
thin steak bad
high value good
high price bad
flat story bad
flat phone good

Z. Nevě̌rilová IA161 NLP in Practice 01 – Opinion mining, sentiment analysis 12 / 23



Sentiment analysis methods: supervised machine learning

1 get example data with labels

2 extract features from the data, i.e. convert the documents to feature
vectors

3 train the parameters (choose an algorithm: SVM, Naive Bayes,
Neural Networks . . . )

4 test the model
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Sentiment analysis methods: supervised machine learning

[Dinu and Iuga, 2012] report best results on Naive-Bayes with tokens as
features and bigrams as features
[Liu, 2012] reports best results with SVM on balanced (English) data
From approx. 2016, non-English SA performed using automatic
translation.
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Sentiment analysis methods: deep learning

Simple use of word embeddings is questionable, since context vectors do
not distinguish polarity (e.g. good and bad occur in similar contexts and
thus have similar vectors.
[Ma et al., 2018] LSTM with two-level attention (target-level +
sentence-level)
SA is sometimes solved using multi-task oriented methods: Autoencoders
(BERT), Autoregressive models, or combination (XLNet,
[Yang et al., 2020])
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Datasets for training

Lexicons (Word lists)

SentiWordNet
https://github.com/aesuli/SentiWordNet

afinn
https://github.com/fnielsen/afinn

Subjectivity Lexicon
http://mpqa.cs.pitt.edu/lexicons/

Bing Liu’s Lexicon
https:

//www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
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Datasets for evaluation

Benchmarks for document sentiment classification

IMDB Movie Reviews
https://www.kaggle.com/lakshmi25npathi/

sentiment-analysis-of-imdb-movie-reviews

Movie Review Data (Polarity dataset)
https:

//www.cs.cornell.edu/people/pabo/movie-review-data/

Sentiment140
http://help.sentiment140.com/for-students

OpinRank Review Dataset
https://archive.ics.uci.edu/ml/datasets/opinrank+

review+dataset

Toxic Comment Classification Challenge
https://www.kaggle.com/c/

jigsaw-toxic-comment-classification-challenge/data
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Sentiment analysis methods: state-of-the-art results

on political tweets, [Maynard and Funk, 2012]: 78% precision and
47% recall

on movie reviews (mixed), [Richa Sharma and Jain, 2014]: 63%
accuracy and 70% recall

on IMDB movie reviews, [Tang et al., 2009]: 88% accuracy

sentiment embeddings [Tang et al., 2016]: outperform word2vec by
about 6 percentage points,
F1 of Twitter Sentiment Classification on SemEval Datasets:
pos/neg class: 86.6%
pos/neg/neu class: 67.5%
hybrid ranking model (neural net catching context and sentiment) +
text features (word n-grams, character n-grams, . . . )

a survey on using deep learning for sentiment analysis:
[Zhang et al., 2018]

XLNet [Yang et al., 2020] solves SA together with other tasks
(multi-task): 97% accuracy on SST-2 (binary classification).

Z. Nevě̌rilová IA161 NLP in Practice 01 – Opinion mining, sentiment analysis 18 / 23



References I

Baccianella, S., Esuli, A., and Sebastiani, F. (2010).
Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis
and opinion mining.
In Chair), N. C. C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J.,
Piperidis, S., Rosner, M., and Tapias, D., editors, Proceedings of the
Seventh International Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta. European Language Resources
Association (ELRA).

Dinu, L. P. and Iuga, I. (2012).
The Naive Bayes classifier in opinion mining: In search of the best
feature set.
In Gelbukh, A., editor, Computational Linguistics and Intelligent Text
Processing, volume 7181 of Lecture Notes in Computer Science, pages
556–567. Springer Berlin Heidelberg.
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