04 – Named Entity Recognition IA161 Advanced Techniques of Natural Language Processing

Z. Nevěřilová

NLP Centre, FI MU, Brno

October 6, 2021

Washington: Ben Carson said Wednesday he's pulling in lots of money amid all the backlash he's received for remarks he made regarding Muslims in politics. The retired neurosurgeon said he raised \$1 million within 24 hours following the CNN debate on Sept. 16, and that donations have poured in after remarks he made over the weekend about Islam and the presidency. "The money has been coming in so fast, it's hard to even keep up with it," he said Wednesday morning on Fox News, when asked about whether his comments had affected his donations. "I remember the day of the last debate, within 24 hours we raised \$1 million. And it's coming in at least at that rate if not quite a bit faster." CNN will not be able to verify fundraising totals with the Federal Election Commission until after the quarter ends Sept 30.

Outline

- Named Entity Recognition
- Named Entity Classification
- Methods for NER
 - Gazetteer Methods for NER
 - Semi-supervised methods for NER
 - Supervised methods for NER
- 4 Evaluation of NER systems

NER aims to recognize and classify names of people, locations, organizations, products, artworks, domain names, phone numbers, dates, money, measurements (numbers with units), law or patent numbers etc.

NER aims to recognize and classify names of people, locations, organizations, products, artworks, domain names, phone numbers, dates, money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word.

NER aims to recognize and classify names of people, locations, organizations, products, artworks, domain names, phone numbers, dates, money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word. [overlap with multi word expression (MWE) processing]

NER aims to recognize and classify names of people, locations, organizations, products, artworks, domain names, phone numbers, dates, money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word. [overlap with multi word expression (MWE) processing]

Example		
	NE	MWE
Brno	1	X

NER aims to recognize and classify names of people, locations, organizations, products, artworks, domain names, phone numbers, dates, money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word. [overlap with multi word expression (MWE) processing]

Example		
	NE	MWE
Brno	1	X
a priori	X	✓

NER aims to recognize and classify names of people, locations, organizations, products, artworks, domain names, phone numbers, dates, money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word. [overlap with multi word expression (MWE) processing]

Example		
	NE	MWE
Brno	1	X
a priori	X	✓
New York	1	✓

Entra and a La

NER is vital for information extraction (IE).

Example

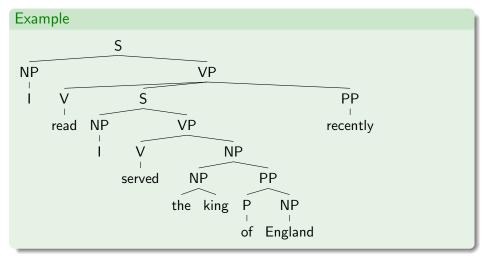
MIT Press published a book by Patrick Hanks with the title Lexical Analysis: Norms and Exploitations. .

MIT Press published a book by Randy Thornhill and Craig T. Palmer entitled A Natural History of Rape: Biological Bases of Sexual Coercion

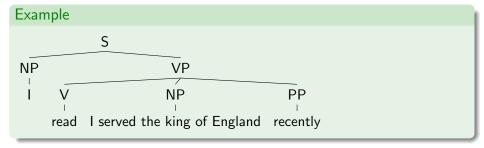
NER is vital for information extraction (IE).

Example				
MIT Press published a book by Patrick Hanks with the title				
Lexical Analysis: Norms and Exploitations				
MIT Press published a book by Randy Thornhill and Craig T. Palmer				
entitled A Natural History of Rape: Biological Bases of Sexual Coercion				
Authors		Title		
Patrick Hanks Lexical Analysis: Norms and				
		Exploitations		
Randy	Craig T.	A Natural History of Rape:		
Thornhill	Palmer	Biological Bases of Sexual Coercion		

Treating the whole multiword NE as one entity can improve advanced natural language processing:



Treating the whole multiword NE as one entity can improve advanced natural language processing:



Example

Masaryk University in Brno

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray

Franz Válek

Nová opera Vladimíra

Franze Válka s mloky . . .

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray

Franz Válek

Nová opera Vladimíra Franze

Válka s mloky ...

Named Entity Classification

Common classes: PERSON, ORGANIZATION, LOCATION Less common classes: MONEY, PERCENT, DATE, TIME

Rare classes: ARTWORK, PRODUCT, ROLE

Named Entity Classification

Common classes: PERSON, ORGANIZATION, LOCATION Less common classes: MONEY, PERCENT, DATE, TIME

Rare classes: ARTWORK, PRODUCT, ROLE

Example

The White House Othello PERSON? ARTWORK? PRODUCT?

Motorola ORGANIZATION? PRODUCT?

The Pope PERSON? ROLE?

two years ago DATE? nothing?

Named Entity Classification

Common classes: PERSON, ORGANIZATION, LOCATION Less common classes: MONEY, PERCENT, DATE, TIME

Rare classes: ARTWORK, PRODUCT, ROLE

Example

The White House Othello PERSON? ARTWORK? PRODUCT?

Motorola ORGANIZATION? PRODUCT?

The Pope PERSON? ROLE?

two years ago DATE? nothing?

The main problem is with metonymy.

Methods for NER

- gazetteer methods (list of NEs)
- semi-supervised machine learning (bootstrapping)
- ullet supervised machine learning (training o model)

lists of NEs + substring search algorithms:

lists of NEs + substring search algorithms:

- list of names
- list of company names
- list of place names

lists of NEs + substring search algorithms:

- list of names
- list of company names
- list of place names

search all occurences of substrings S_k, \ldots, S_l from lists of pattern strings P_1, \ldots, P_p in a target string $T[1 \ldots m]$ Example algorithms:

- naïve multi-pass: O(p(m-n+1))
- improvements: Rabin-Karp, Boyer-Moore, Knuth-Morris-Pratt
- single-pass: Aho-Corasick: O(m + k)

where p is the number of patterns, m is the target (searchable) string length, n is the average pattern length, k is the total number of occurrences of the pattern strings in the text

Problems: disambiguation + fixedness

Example

May the force be with you!

I was born on May.

Karel May is my favorite writer.

Example

Google was bought by Brand New So-far-unknown Company Inc.

bootstrapping = a small degree of supervision

bootstrapping = a small degree of supervision typically requires a small set of seeds

bootstrapping = a small degree of supervision typically requires a small set of seeds

Example

seeds: John, James, Steve search patterns in contexts: Peter, David, Michael . . .

bootstrapping = a small degree of supervision typically requires a small set of *seeds*

```
Example
```

```
seeds: John, James, Steve
search patterns in contexts:
Peter, David, Michael . . .
```

Example

```
[Capitalized words and letters], the CEO of [Capitalized words and non-capitalized stop words],
```

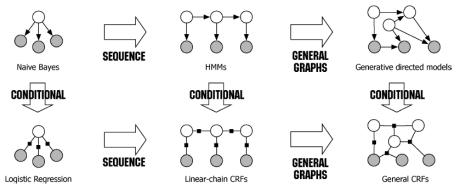
```
Richard Rosenblatt, the CEO of Demand Media,

Michael Close, the CEO of Enterprise Training Centre,
```

. . .

manually annotated training set manually annotated test set (the golden standard) + optionally the gazetteer

discriminative vs. generative methods



Supervised methods for NER: Annotation

XML-like annotation
 Zpívali jí <ne type="oa">Krásnou <ne type="pf">Meredith</ne></ne>

token	simple	IOB	IOBSE
Alex	PER	B-PER	S-PER
is	0	0	0
going	0	0	0
with	0	0	0
Marty	PER	B-PER	B-PER
A.	PER	I-PER	I-PER
Rick	PER	I-PER	E-PER
to	0	0	Ο
Los	LOC	B-LOC	B-LOC
Angeles	LOC	I-LOC	E-LOC

token-based annotation

NER in the Era of Neural Networks

Similarly to traditional ML, NER is solved as classification task for each token in a sequence.

For sequences, recurrent neural networks (such as LSTM and BiLSTM) work the best.

However, the dependencies in the token sequence can be long-range. For this, the transformer architecture works the best.

 \rightarrow

Transformers solve all NLP tasks in one.

BERT [3] uses bidirectional pre-training for language representations.

NER in the Era of Neural Networks

Similarly to traditional ML, NER is solved as classification task for each token in a sequence.

For sequences, recurrent neural networks (such as LSTM and BiLSTM) work the best.

However, the dependencies in the token sequence can be long-range. For this, the transformer architecture works the best.

 \rightarrow

Transformers solve all NLP tasks in one.

BERT [3] uses bidirectional pre-training for language representations.

NER in the Era of Neural Networks

Similarly to traditional ML, NER is solved as classification task for each token in a sequence.

For sequences, recurrent neural networks (such as LSTM and BiLSTM) work the best.

However, the dependencies in the token sequence can be long-range. For this, the transformer architecture works the best.

 \rightarrow

Transformers solve all NLP tasks in one.

BERT [3] uses bidirectional pre-training for language representations.

Evaluation of NER systems

precision, recall, F1-score

Evaluation of NER systems

precision, recall, F1-score separate precision, recall, F1-score measurements for different classes

Evaluation of NER systems

precision, recall, F1-score separate precision, recall, F1-score measurements for different classes the less difficult classes are: DATE, MONEY, PERCENT the most difficult classes are: PERSON, ORGANIZATION

Error analysis:

- errors in boundaries detection
- errors in class labeling

What is preferred: high precision (and low recall) or high recall (and more false positives)?

... see also [10]

Current state-of-the-art results

Language	System	F1
English	MUC-7 ¹ , baseline	58.89%
English	MUC-7 human annotation	97.60%
English	MUC-7 best result [11]	93.39%
English	CONLL-2003 best result [4]	88.76%
English	CONLL-2003 [7]	90.10%
English	CONLL-2003 BERT [3]	92.8%
English	CONLL-2003 ACE [15]	94.6%
German	GermEval 2014 best result [6]	77.14%
German	LSTM+CRF+char-based [9]	78.76%
Russian	[5]	75.05%
Italian	tint ²	82.11
Czech	[13]	82.82%
Czech	[8]	83.24%
Arabic	[1]	65.76%

¹Message Understanding Conference

²http://tint.fbk.eu/ner.html

Currently used datasets

Language	Dataset name	# size
English	ConLL 2003	22,137 sentences
English	OntoNotes 5.0	1,445k words
Chinese	OntoNotes 5.0	1,200k words
Arabic	OntoNotes 5.0	300k words
Czech	CNEC 2.0	8,993 sentences
Czech	SumeCzech-NER	1,000,000 articles
German	ConLL 2003	18,933 sentences
German	NoSta-D	26,200 sentences
Italian	Evalita (I-CAB)	113,624 words
•		

Maha Althobaiti, Udo Kruschwitz, and Massimo Poesio.
A semi-supervised learning approach to Arabic named ent

A semi-supervised learning approach to Arabic named entity recognition.

In Galia Angelova, Kalina Bontcheva, and Ruslan Mitkov, editors, *RANLP*, pages 32–40. RANLP 2011 Organising Committee / ACL, 2013.

R. A. Baeza-Yates.

Algorithms for string searching. *SIGIR Forum*, 23(3-4):34–58, April 1989.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding, 2019.

- Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang.
 Named entity recognition through classifier combination.
 In Proceedings of the Seventh Conference on Natural Language
 Learning at HLT-NAACL 2003 Volume 4, CONLL '03, pages
 168–171, Stroudsburg, PA, USA, 2003. Association for Computational
- Rinat Gareev, Maksim Tkachenko, Valery Solovyev, Andrey Simanovsky, and Vladimir Ivanov.
 Introducing baselines for Russian named entity recognition.
 In Proceedings of the 14th International Conference on Computational Linguistics and Intelligent Text Processing Volume Part I, CICLing'13, pages 329–342, Berlin, Heidelberg, 2013. Springer-Verlag.
 - Christian Hänig, Stefan Thomas, and Stefan Bordag.

 Modular classifier ensemble architecture for named entity recognition on low resource systems.

 2014.

Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu.
Bidirectional LSTM-CRF models for sequence tagging.

CoRR, abs/1508.01991, 2015.

Michal Konkol and Miloslav Konopík.
Crf-based czech named entity recognizer and conso

Crf-based czech named entity recognizer and consolidation of Czech NER research.

In Ivan Habernal and Václav Matoušek, editors, *Text, Speech, and Dialogue*, volume 8082 of *Lecture Notes in Computer Science*, pages 153–160. Springer Berlin Heidelberg, 2013.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer.

Neural architectures for named entity recognition. *CoRR*, abs/1603.01360, 2016.

Chris Manning.

Doing named entity recognition? Don't optimize for F1. online, accessible on http://nlpers.blogspot.cz/2006/08/doing-named-entity-recognition-dont.html, accessed 2015-10-08.

Andrei Mikheev, Claire Grover, and Marc Moens. Description of the LTG system used for MUC-7. Association for Computational Linguistics, 1998.

David Nadeau and Satoshi Sekine.

A survey of named entity recognition and classification. Linguisticae Investigationes, 30(1):3–26, January 2007. Publisher: John Benjamins Publishing Company. Jana Straková, Milan Straka, and Jan Hajič.

A new state-of-the-art Czech named entity recognizer.

In Ivan Habernal and Václay Matoušek, editors, Text, Spec

In Ivan Habernal and Václav Matoušek, editors, *Text, Speech, and Dialogue*, volume 8082 of *Lecture Notes in Computer Science*, pages 68–75. Springer Berlin Heidelberg, 2013.

Charles Sutton and Andrew McCallum.

An introduction to conditional random fields.

Foundations and Trends in Machine Learning, 4(4):267–373, 2012.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, and Kewei Tu.

Automated Concatenation of Embeddings for Structured Prediction.

In the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021).

Association for Computational Linguistics, August 2021.