
Optimizing the Inference of
Transformer Based Models

Radoslav Sabol
xsabol@fi.muni.cz

NLP Centre, Faculty of Informatics, Masaryk University

April 25, 2023



Outline

1. How to batch during inference
2. Quantization
3. Handling huge models
4. Bonus: PyTorch 2.0

· · 2 / 19



Tweaks - Batching During Inference

always helpful during training
not necessarily true for inference

can be either 10x speedup or 5x slowdown depending on:
1. hardware
2. data
3. used model

· · 3 / 19



Batching - CPU

if you are using a CPU, never batch

· · 4 / 19



Batching - GPU

if you are latency constrained (live product doing inference),
don’t batch
if you have no clue about the size of the sequence length
(natural data), by default 1 don’t batch, then:

measure, try to tentatively increase batch size until the first OOM
treat OOM errors nicely as they are inevitable

Measure performance on your load, with your hardware.
Measure, measure, and keep measuring. Real numbers are the
only way to go.

1https://huggingface.co/docs/transformers/main_classes/pipelines#pipeline-
batching

· · 5 / 19



GPU Batching - Diminishing Returns

· · 6 / 19



Quantization - Basic Idea

lowering the inference and memory costs by changing the
weight and activation data types 2

usually at the cost of reduced accuracy
typical conversions from float32:

float16, accumulation data type float16
int8, accumulation data type int32

important to keep hardware capabilities in mind

2https://huggingface.co/docs/optimum/concept_guides/quantization

· · 7 / 19



Quantization - Calibration

post-training static quantization
both weights and activations are quantized in advance
needs a calibration dataset to adjust the activations

post-training dynamic quantization
weights quantized in advance, activations quantized on the fly

quantization-aware training
performed at training time
simulates the error induced by quantization to let the model
adapt to it

· · 8 / 19



Quantization Example - ONNX Runtime

· · 9 / 19



Use Case - Contract Understanding

extractive task for legal contracts
CUAD - Contract Understanding Atticus Dataset

a corpus of 510 commercial legal contracts
41 categories with overall 14,000 annotations
Document Name, Parties, Expiration Date, Solicit of Employees, .. .

translated as a question answering task in the original paper
RoBerta large, extra large, and DeBerta extra large report the
best experimental results

· · 10 / 19



Post-Quantization Results - Inference Time (CPU)

· · 11 / 19



Post-Quantization Results - Weighted F1

· · 12 / 19



Post-Quantization Results - GPU Runtime (Oops)

· · 13 / 19



Handling Huge Models - Intro

1. Instantiate a model with randomly initialized weights
2. Load the model weights into the main memory
3. Replace the randomly initialized weights with the trained ones

· · 14 / 19



Instantiate a Huge Model using accelerate

allows to instantiate a model without using any RAM
but what if the weights do not fit into the RAM anyway?

· · 15 / 19



Using Model Shards
main idea: use multiple memory devices (RAM, GPU VRAM, even
disk) to load your model
requires your model to be split into several files (also called
shards)
index.json contains the required mapping 3

3https:
//huggingface.co/docs/accelerate/usage_guides/big_modeling

· · 16 / 19

https://huggingface.co/docs/accelerate/usage_guides/big_modeling
https://huggingface.co/docs/accelerate/usage_guides/big_modeling


Loading Huge Model Weights Using accelerate

1. uses up all the available GPU memory
2. if 1.) is full, uses up all the CPU RAM
3. if 2.) is full, the remaining weights are stored inside of hard drive
as memory-mapped tensors

· · 17 / 19



How Does Inference Work?

1. at each layer, the inputs are put on the right device
2. for the weights offloaded on the CPU, they are put on a GPU just
before the forward pass, and cleaned up just after

3. for the weights offloaded on the hard drive, they are loaded in
RAM then put on a GPU just before the forward pass, and
cleaned up just after

Possible Limitations:
at least one GPU is required
GPU offloading is naive and not optimized
overall, it is an experimental API

· · 18 / 19



BONUS: Pytorch 2.0 - torch.compile()

.compile() method allows to translate the model into TorchScript
the performance gain is claimed to be between 30%-200% 4 for
HuggingFace models
experimental result with RoBerta Base on 100 dummy examples:

Before Compilation: 23.38s
After Compilation: 16.93s - a 72% increase

4https://pytorch.org/get-started/pytorch-2.0/
#accelerating-hugging-face-and-timm-models-with-pytorch-20

· · 19 / 19

https://pytorch.org/get-started/pytorch-2.0/##accelerating-hugging-face-and-timm-models-with-pytorch-20
https://pytorch.org/get-started/pytorch-2.0/##accelerating-hugging-face-and-timm-models-with-pytorch-20



