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Topic modelling

organize and understand large collections of documents

text mining

discover topical patterns in documents

topic – group of words representing the information

applications
I recommender systems
I document/book classification
I bio-informatics (interpret biological data)
I opinion/sentiment analysis
I chatbots, topic tracking
I text categorization
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Latent Semantic Analysis

vector representation of documents

compare by vector distance

document = bag of words

topic = set of words

applications:
I data clustering, document classification
I term relations (synonymy, polysemy)
I cross language document retrieval
I word relations in text
I similarity in multi choice questions
I prior art in patents
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LSA – step 1

count term-document matrix (word frequency in documents)

rows = words, columns = documents

sparse matrix
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LSA – step 2

weighting matrix elements

most popular tf–idf

term occuring in many documents is not interesting for analysis
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LSA – step 3
Singular Value Decomposition
matrix factorization (reduce dimensions, throw away noise)
cluster close vectors (documents and terms)
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Latent Dirichlet Allocation

statistical model

each document is a mix of topics

LDA discovers topics and their ratio

each word in document was generated by one of the topics

applications:
I topic relations
I content recommendation
I group/community overlapping
I document topic changes
I genetics (ancestral populations)
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Example

Document 1: I like to eat broccoli and bananas.
Document 2: I ate a banana and spinach smoothie for breakfast.
Document 3: Chinchillas and kittens are cute.
Document 4: My sister adopted a kitten yesterday.
Document 5: Look at this cute hamster munching on a piece of broccoli.

Example

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching
Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster

Example

Document 1 and 2: 100% Topic A
Document 3 and 4: 100% Topic B
Document 5: 60% Topic A, 40% Topic B
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LDA process

pick fixed number of topics

for each document, randomly assign topic to each word

improve, for each document d:
I for each word w and topic t count:
I all topic assignments are correct, except for current word
I p(topic t|document d) – how many words in document have topic?
I p(word w |topic t) – how many assignments to topic for word?
I new topic: probability p(topic t|document d)× p(word w |topic t)

repeat and reach almost steady state
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Gensim
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