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Automatic language correction

A text with errors...

is less comprehensible,

looks less professional,

poses problems for machine translation

Automatic language correction:

spell checking – detect spelling errors in individual words,

grammar checking – incorrect use of person, number, case or gender,
improper verb government, wrong word order, etc. . .

word completion – suggestion of the word currently being entered.

A. Horák, J. Švec IA161 Advanced NLP 13 – Automatic Language Correction 4 / 24



Spell checking

detecting which words in a document are misspelled,

providing spelling suggestions for incorrectly spelled words in a text,

correction is the task of substituting the well-spelled hypotheses for
misspellings,

usually uses a dictionary of valid words,

application: word processing and postprocessing optical character
recognition [Whitelaw et al., 2009] or speech recognition.
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Type of errors

Non-word errors – the misspelled word is not a valid word in a
language,

I typographic errors – usually keyboard typing error (e.g.“teh” – “the”,
“speel” – “spell”),

I cognitive errors – caused by the writer’s misconceptions (e.g. “recieve”
– “receive”, “conspiricy” – “conspiracy”),

I phonetic errors – substituting a phonetically equivalent sequence of
letters (e.g.“seperate” – “separate”).

Real-word errors – sentence contains a valid word, but it is
inappropriate in the context [Hladek et al., 2013].

Example

Non-word error: “I’d like a peice of cake.”
Real-word error: “I’d like a peace of cake.”
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Error correction

Consists of two steps:
I generation of candidate corrections,
I ranking of candidate corrections.

Isolated-word methods:
I edit distance,
I similarity keys,
I character n-gram-based techniques,
I rule-based techniques,
I probabilistic techniques,
I neural networks [Gupta and Mathur, 2012].
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Isolated-word methods I

Edit distance

assumption – person usually makes few errors,

minimum set of operations to transform a non-word to a dictionary
word,

operations: insertions, deletions and substitutions,

useful for: correcting errors resulting from keyboard input.

Example

Edit distance between “kitten” and “sitting” is 3:

1 kitten → sitten substitution of “s” for “k”

2 sitten → sittin substitution of “i” for “e”

3 sittin → sitting insertion of “g” at the end
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Isolated-word methods II
Similarity keys:

assign a key to each dictionary word,
compare with the key computed for the non word,
most similar key is selected as suggestion.

Soundex – phonetic algorithm (English) [Holmes and McCabe, 2002]

Example

N Represents letters

1 B, F, P, V

2 C, G, J, K, Q, S, X, Z

3 D, T

4 L

5 M, N

6 R

1 Keep the first letter

2 Drop occurrences of a, e, i, o, u, y, h, w

3 Replace letters with numbers

4 Merge adjacent identical numbers

5 Add zeroes to the end, or remove right-
most numbers

Output: (letter, number, number, number)

key(“Robert”)=R163; key(“Robin”)=R150 – not similar
key(“Smith”)=S530; key(“Smyth”)=S530 – similar

A. Horák, J. Švec IA161 Advanced NLP 13 – Automatic Language Correction 9 / 24



Isolated-word methods III

Character N-gram-based techniques:

compute similarity coefficient of two strings

based on the number of shared n-grams

δn(a, b) =
|n-grams(a) ∩ n-grams(b)|
|n-grams(a) ∪ n-grams(b)|

Example

fact vs. fract

bigrams(“fact”) = {“-f”, “fa”, “ac”, “ct”, “t-”} ... 5 bigrams
bigrams(“fract”) = {“-f”, “fr”, “ra”, “ac”, “ct”, “t-”} ... 6 bigrams

... ∩ ... = {“-f”, “ac”, “ct”, “t-”} ... 4 bigrams

... ∪ ... = {“-f”, “fa”, “fr”, “ra”, “ac”, “ct”, “t-”} ... 7 bigrams

δ2(“fact”, “fract”) = 4
7 = 0.57
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Isolated-word methods IV

Rule-based techniques

a set of rules for common misspellings and typographic errors,

each rule “fixes” one kind of error

rules are applied to out-of-vocabulary words

Probabilistic techniques

based on statistical features of the language (corpus)
I transition probabilities – probability that a letter is followed by another

letter
I confusion probabilities – how often a letter is mistaken or substituted

for another letter

Neural networks

several new and promising techniques

input node = every possible n-gram in every position of a word

output node for each word in the dictionary
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Grammar checking

Example

“That’s good to now”
“That’s good to know”

Grammar checking starts where spell checking ends

deals with the most difficult and complex type of language errors
I wrong word order,
I verb tense errors,
I subject/verb agreement,
I punctuation errors,
I etc...

two main approaches
I rule-based methods – time-consuming, less flexible, more precise
I statistical methods – easier and faster to implement, learn from

examples, less error-prone [Nazar and Renau, 2012]
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Rule-based grammar checking

Testing the input text against a set of handcrafted rules

Example

rule: I + verb(3rd person, singular form)
→ incorrect verb form usage – “I has a dog”

+ advantages:
I rules can be easily added, modified or removed
I rule can have a corresponding extensive explanation,
I decisions can be traced to a particular rule,
I rules can be authored by linguists, no need of programming

– disadvantages:
I large amount of manual work
I extensive rule set is needed [Mozgovoy, 2011].
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Rule-based grammar checker example

LanguageTool2 – open source grammar checker

1 plain text as input

2 splits text into sentences

3 splits sentences into words

4 finds part-of-speech tags for each word and its base form
walks – walk

5 matches the analyzed sentences against error patterns and runs rules.

2https://languagetool.org/ [Naber, 2003]
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Rule example in LanguageTool

Example

“I thing that’s a good idea.”
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Statistical grammar checking

based on analysis of grammatically correct POS-annotated corpus,

build a list of POS tag sequences,
I some sequences are very common (determiner+adjective+noun as in

“the old man”)
I others will probably not occur at all

(determiner+determiner+adjective)

sequences which occur often in the corpus are considered correct,

uncommon sequences might be errors.
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Word completion

reduce the number of keystrokes

suggesting the completion of the word

use context information to predict what block of characters (letters,
n-grams, syllables, words, or entire phrases) a person is going to write
next

based on wide-coverage word or language model

prediction at earliest possible point of a character sequence being
entered [Van den Bosch, 2011]
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Best results

Spell checking (first suggestion):
I English – 95 % [Brill and Moore, 2000]
I Czech – 73 % [Richter et al., 2012]

Grammar checking (various tests average):
I English – 55 % [Nazar and Renau, 2012]
I Czech – 40 % [Petkevič, 2014]
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