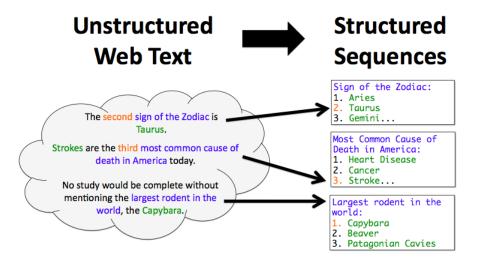
10 – Extracting structured information from text IA161 Advanced Techniques of Natural Language Processing

Zuzana Nevěřilová, Vojtěch Kovář

NLP Centre, FI MU, Brno

November 20, 2017


What?

2 Why?

3 How?

4 Who?

Language Computation without Understanding

Information Extraction Goals

Fed Chairman
Ben Bernanke
said the U.S.
economy...
The euro rose to
\$1.2008,
compared to
\$1.1942
on Tuesday.

Facts.

Ben Bernanke is a Person.

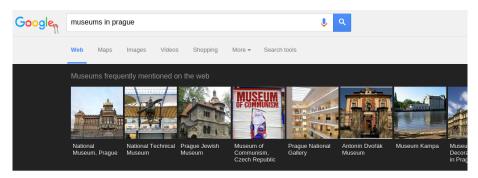
Fed is an Organization.

The US is a Country.

Fed is located in the US.

Ben Bernanke is the US Fed Chairman.

\$1.2008 is an amount of money.


Information Extraction Goals

- Types of Factual Information
 - keywords
 - entities
 - relations
 - events
- Extracted from
 - ▶ Different text types: news articles, emails, novels, output from speech recognizer
 - Different domains or the general domain

Information Extraction Applications

- Direct applications for specific users:
 - financial analysts
 - media analysts
 - PR workers
- Use in subsequent computer applications
 - information systems
 - question answering
 - automatic reasoning
 - automatic summarization
 - **.**..
- Disambiguate and shorten the information
- Find informational redundancy, aggregate information from several sources

Successful Information Extraction Systems

Prague Museums - Visitor Information - My Czech Republic www.myczechrepublic.com > Prague Guide > Museums & Galleries ▼ Museums in Prague National Museum National Explicial Museum and other

Successful Information Extraction Systems

- x.ai automatic personal assistant Amy
 - agrees automatically on meeting times
 - recognizes/asks for contact details
 - operates over Google calendar
- Extracting protein interaction from research texts
- Summarizing and filtering stock market news
- Extracting information about conflicts from news
- Smaller systems for more specialized tasks

Information Extraction Evaluation

- Message Understanding Conference + Text REtrieval Conference
- series of conferences starting in 80s and 90s
- shared tasks + competition among systems
- helped standardization in the field

Information Extraction Approaches

- Specific domain / Complex information
 - precise, narrow requests from small homogeneous corpora
 - weighting/ordering/refining results
- General domain / Simple snippets of information
 - vague request from huge data
 - aggregation of the response

Information Extraction Components

named entity recognition (NE)	finds and classifies names, places, dates, keywords etc.	rocket, Tuesday, Dr Head, Dr Big Head, We Build Rockets Inc.
coreference resolution (CO)	finds identity relations between entities	It = rocket, Dr Head = Dr Big Head
relation extraction (RE)	add description to entities, finds relation between entities (based on CO)	rocket = red shiny, rocket - brain- child - Dr Head, Dr Head - works for - We Build Rockets Inc.
event extraction (EE)	fits RE into event scenarios	rocket launching event

The shiny red rocket was fired on Tuesday. It is the brainchild of Dr Big Head. Dr Head is a staff scientist at We Build Rockets Inc.

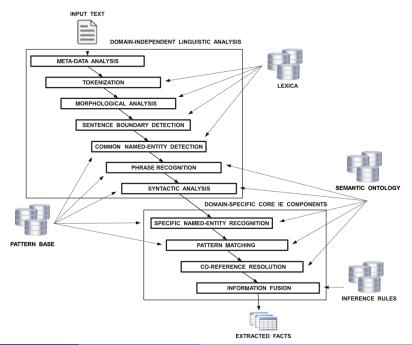
Information Extraction Components

named entity	discussed in detail in lec-	Z. Nevěřilová, 20/11/2017, A219,	
recognition (NE)	ture 04	IA161	
coreference	discussed in detail in lec-	jej = IA161	
resolution (CO)	ture 08		
relation	discussed later in this lec-	A219 = computer room, IA161 -	
extraction (RE)	ture	being taught $-20/11/2017$	
event extraction	event recognition, "filling	course: name [IA161], date	
(EE)	the gaps"	[20/11/2017], lecture room [A219],	
	↑	teacher [Z. Nevěřilová]	
domain dependent			
tied to scenarios of interest			

Výuka předmětu IA161 se koná v pondělí v počítačové učebně A219. 20. listopadu 2017 jej učí Zuzana Nevěřilová.

Relation Extraction

- noun phrase recognition
- verb group recognition
- adjective phrase recognition
- adverbial phrase recognition
- partial parsing
- event recognition: actors = noun phrases, action = verb, place = adverbial phrase, time = adverbial phrase
- rule-based or statistical


within a given task, the set of relations is *fixed* Best MUC results: \approx 75–80% (humans \approx 90%)

Scenario Templates

prototypical outputs

- precision—recall trade-off
- other evaluation metric: slot error rate $S = \frac{incorrect + missing}{key}$, where incorrect is the number of incorrectly assigned slots, missing is the number of missing slots, and key is the total number of slots.

Best MUC results: $\approx 60\%$ (humans $\approx 80\%$)

Accuracy

- Still not very consistent evaluation metrics
- General texts
 - "fill in the gaps" task (as in MUCs): around 60 %
 - ► EFa precision of phrase detection and classification: 70 %
 - far from reliable and usable analysis
 - ▶ OIE reports over 80 % precision
- Specialized systems
 - simpler task, e.g. only dates, places, ...
 - e.g. Amy, the automated personal assistant
 - much better, human level accuracy

Information extraction: Summary

- extracting structured information from text
- named entity detection + coreference resolution + relation extraction
- event recognition = domain specific, task specific
- successful in very specialized tasks, not very usable in general tasks

Trends:

- social media
- cross-lingual extraction
- open (general) domain

Information Extraction Systems

- Open Information Extraction (OIE), or TextRunner
 - http://openie.allenai.org
 - ▶ 100 million web pages
 - ▶ 500 million assertions
- GATE general architecture for text engineering
 - http://gate.ac.uk
 - huge system for language annotation and all levels of automatic processing
 - contains a customizable information extraction component
- EFa Extraction of Facts
 - http://nlp.fi.muni.cz/projects/set/efa
 - in NLP centre at FI
 - analysis of running text
 - syntactic analysis
 - phrase detection
 - semantic classification of phrases

References I

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).

Open information extraction for the web.

IJCAI, 7:2670-2676.

Chang, C.-H., Kayed, M., Girgis, M. R., and Shaala, K. F. (2006).

A survey of web information extraction systems.

Knowledge and Data Engineering, IEEE Transactions on, 18(10):1411–1428.

Cunningham, H. (2005).

Information Extraction, Automatic.

Encyclopedia of Language and Linguistics, 2nd Edition.

References II

- Fader, A., Soderland, S., and Etzioni, O. (2011).
 Identifying relations for open information extraction.
 In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, EMNLP '11, pages 1535–1545, Stroudsburg, PA, USA. Association for Computational Linguistics.
- Mitkov, R. (2005).

 The Oxford handbook of computational linguistics.
 Oxford University Press.
 - Piskorski, J. and Yangarber, R. (2013). Information Extraction: Past, Present and Future, pages 23–49. Springer Berlin Heidelberg, Berlin, Heidelberg.