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Named Entity Recognition (NER)

NER aims to recognize and classify names of people, locations,
organizations, products, artworks, domain names, phone numbers, dates,
money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word.
[overlap with multi word expression (MWE) processing]

Example

NE MWE

Brno 3 7

a priori 7 3

New York 3 3
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Z. Nevě̌rilová IA161 Advanced NLP 04 – Named Entity Recognition 4 / 20



Named Entity Recognition (NER)

NER aims to recognize and classify names of people, locations,
organizations, products, artworks, domain names, phone numbers, dates,
money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word.
[overlap with multi word expression (MWE) processing]

Example

NE MWE

Brno 3 7

a priori 7 3

New York 3 3
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Z. Nevě̌rilová IA161 Advanced NLP 04 – Named Entity Recognition 4 / 20



Named Entity Recognition (NER)

NER aims to recognize and classify names of people, locations,
organizations, products, artworks, domain names, phone numbers, dates,
money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word.
[overlap with multi word expression (MWE) processing]

Example

NE MWE

Brno 3 7

a priori 7 3

New York 3 3
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Named Entity Recognition (NER)

NER is vital for information extraction (IE).

Example

MIT Press published a book by Patrick Hanks with the title
Lexical Analysis: Norms and Exploitations. .

MIT Press published a book by Randy Thornhill and Craig T. Palmer
entitled A Natural History of Rape: Biological Bases of Sexual Coercion

Authors Title

Patrick Hanks Lexical Analysis: Norms and
Exploitations

Randy
Thornhill

Craig T.
Palmer

A Natural History of Rape:
Biological Bases of Sexual Coercion
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Named Entity Recognition (NER)

Treating the whole multiword NE as one entity can improve advanced
natural language processing:

Example

S

VP

PP

recently

S

VP

NP

PP

NP

England

P

of

NP

kingthe

V

served

NP

I

V

read

NP

I
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Named Entity Recognition (NER)

Treating the whole multiword NE as one entity can improve advanced
natural language processing:

Example

S

VP

PP

recently

NP

I served the king of England

V

read

NP

I
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NER: recognizing boundaries

Example

Masaryk University in Brno

Example
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Z. Nevě̌rilová IA161 Advanced NLP 04 – Named Entity Recognition 7 / 20



NER: recognizing boundaries

Example

Masaryk University in Brno

Example
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NER: recognizing boundaries

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray
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NER: recognizing boundaries

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray

Nová opera Vladiḿıra

Franze Válka s mloky . . .
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NER: recognizing boundaries

Example

Masaryk University in Brno

Example

The Picture of Dorian Gray

Nová opera Vladiḿıra Franze

Válka s mloky . . .
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Named Entity Classification

Common classes: PERSON, ORGANIZATION, LOCATION
Less common classes: MONEY, PERCENT, DATE, TIME
Rare classes: ARTWORK, PRODUCT, ROLE

Example

The White House LOCATION? ORGANIZATION
Othello PERSON? ARTWORK? PRODUCT?
Motorola ORGANIZATION? PRODUCT?
The Pope PERSON? ROLE?
two years ago DATE? nothing?

The main problem is with metonymy.
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Methods for NER

gazetteer methods (list of NEs)

semi-supervised machine learning (bootstrapping)

supervised machine learning (training)
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Gazetteer Methods for NER

lists of NEs + substring search algorithms:

list of names

list of company names

list of place names

search all occurences of substrings Sk , . . . ,Sl from lists of pattern strings
P1, . . . ,Pp in a target string T [1 . . .m]
Example algorithms:

näıve multi-pass: O(p(m − n + 1))

improvements: Rabin-Karp, Boyer-Moore, Knuth-Morris-Pratt

single-pass: Aho-Corasick: O(m + k)

where p is the number of patterns,
m is the target (searchable) string length,
n is the average pattern length,
k is the total number of occurrences of the pattern strings in the text
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Gazetteer Methods for NER

Problems: disambiguation + fixedness

Example

May the force be with you!
I was born on May.
Karel May is my favorite writer.

Example

Google was bought by Brand New So-far-unknown Company Inc.
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Semi-supervised methods for NER

bootstrapping = a small degree of supervision

typically requires a small set of seeds

Example

seeds: John, James, Steve
search patterns in contexts:
Peter, David, Michael . . .

Example

[Capitalized words and letters], the CEO of
[Capitalized words and non-capitalized stop words],

Richard Rosenblatt , the CEO of Demand Media ,

Michael Close , the CEO of Enterprise Training Centre ,
. . .
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Semi-supervised methods for NER

good for discovering NEs (fixedness problem solved)
but not good at disambiguation
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Supervised methods for NER

manually annotated training set
manually annotated test set (the golden standard)
+ optionally the gazetteer

discriminative vs. generative methods
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Evaluation of NER systems

precision, recall, F1-score

separate precision, recall, F1-score measurements for different classes
the less difficult classes are: DATE, MONEY, PERCENT
the most difficult classes are: PERSON, ORGANIZATION

Error analysis:

errors in boundaries detection

errors in class labeling

What is preferred: high precision (and low recall) or high recall (and more
false positives)?

. . . see also [8]
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Current state-of-the-art results

Language System F1

English MUC-71, baseline 58.89%
English MUC-7 human annotation 97.60%
English MUC-7 best result [9] 93.39%
English CONLL-2003 best result [3] 88.76%
English CONLL-2003 [6] 90.10%
German GermEval 2014 best result [5] 77.14%
Russian [4] 75.05%
Czech [11] 82.82%
Czech [7] 83.24%
Arabic [1] 65.76%

1Message Understanding Conference
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Dialogue, volume 8082 of Lecture Notes in Computer Science, pages
68–75. Springer Berlin Heidelberg, 2013.

Charles Sutton and Andrew McCallum.
An introduction to conditional random fields.
Foundations and Trends in Machine Learning, 4(4):267–373, 2012.
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