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Computational stylometry

Definition

Computational stylometry develops techniques that allow us to find out
information about the authors of texts on the basis of an automatic
linguistic analysis of those texts.

Application
@ basic research on the linguistic properties of text determining style?
@ literary research (resolving disputed authorship)

@ forensic applications (disputed authorship of suicide notes, blackmail
letters etc.)
© human resources profiling (describe and explain the causal relations

between psychological and sociological properties of authors on the
one hand, and their writing style on the other)[Daelemans, 2013]

“http://www.clips.ua.ac.be/~walter/educational/stylometry.html
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History

Mendenhall, T. C. 1887.
The Characteristic Curves of Composition. Science Vol 9: 237-49.

@ The first algorithmic analysis
o Calculating and comparing histograms of word lengths

@ Authorship verification of Shakespeare’s plays

Oxford, Bacon
Derby, Marlowe
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Information about author

Stylometry techniques can reveal following information:
© gender,
@ region of origin,
O age,
© personality (extraverted or introverted),
© education level,

O indication of the identity of the author:

» authorship attribution,
» machine generated text detection:

* spam detection,
* automatic translation detection,

@ etc.
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Demarcation against other fields

Topic recognition

Topic recognition features Stylometry features

repeated non-stop-words (repeated) stop-words
repeated phrases (rare in corpus) | repeated phrases

(common in corpus)

usually based on entity detection | mostly without entity detection

Plagiarism detection

Plagiarism detection features

Stylometry features

word n-grams

rare character n-grams

based on word substitution

based on word reordering in sentence

POS tags n-grams
frequent character n-grams
word choice is important
word order is important
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Stylometric-technique categories

Categories

@ morphological
@ syntactic

© lexical

Q other

Assumptions
Author has:
@ unique active vocabulary
@ favourite phrases and word n-grams

© a certain level of knowledge of grammar (mistakes)

@ personalized handling of typography
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Examples: lexical stylometric features
Word length
@ use lemmas instead of tokens

@ active vocabulary contains long words, preference of longer/shorter
words, ...

Vocabulary richness

@ Yule, 1944: A )
10 i<V — N
K — (Z / ! ) (1)
N2
where V; denotes the number of words with frequency i and N is the
number of words in the text.

@ Simpson, 1949:

ii—1
D= Vi —. 2
S (Vg 2 ) @)
where V; denotes the number of words with frequency i and N is the
number of words in the text. )
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Examples: morphological stylometric features

N-grams of part-of-speech tags
@ N > 1 is better in free word order languages

@ overcomes topic dependency of token N-grams

Majka tags n-grams
e Word class bigrams (“myslel bych” = [k5][kY])

@ Most frequent reduced tags N-grams

@ Filter out rare morphological information ([kYmCplnS] = [kYp1nS])
@ Find the most common tag sets on test data
© Use K the most frequent tag sets as features
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Examples: syntactic stylometric features

Requires syntactic
analyser

SET
(http://nlp.fi.
muni.cz/trac/set):

<SENTENCE>
<NP> <C>
<N> <NP>
Priklad <ADJ> <N>

jednoduchého stromu

N-grams of clause types
@ unigrams: 2 x [N] and 1 x [ADJ]
@ bigrams: 1 x [N][ADJ] and
1 x [ADJ][N]
@ trigrams: 1 x [N][ADJ][N]

Syntactic tree features
@ branching factor
@ depth
© maximal width
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Feature extraction process

Build train corpus
@ consists of texts similar to examined data
@ used to find the most common N-grams, stop words, ...

© bigger is better

Text normalization (same for train corpus and analysed data)

@ remove automatically generated tags (HTML, XML) and decode
encoded entites

@ remove automatic text repetition (e-mails)

© replace URLs, images, keys, ... by custom tag
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Feature extraction process

Text preprocessing

@ annotate document (tokenization, morphological and syntactic
analysis, entity and collocation detection, date and time recognition,

@ save documents as object consisting of original text (needed for
extending features and debuging) and all analysis outputs

Training: Feature extraction, normalization and selection

e Given F features, generate feature vector {f¢1, fra, ..., fsr} for each
document.

o Normalize each feature fi (linear function Sg with target domain
(0,1) or (—1,1))
o Feature selection F => F'.
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Feature extraction process

Analysis

o Use F’ features, generate feature vector for each document.

@ Scale each feature fi using function Sg

Process of document analysis
Pipeline consisting of:
@ Text normalization function: raw text = clean text)

@ Text annotation functions: clean text = support objects containing
morphological, syntactic and semantic information about text

© Feature extraction: support objects = feature vector

© Feature scaling (normalization): feature vector = scaled feature
vector
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Machine learning

Machine learning notes

o If using linear models, discretize or divide features (e.g. feature avg.
world length convert into short, average and long words relative
frequency features)

@ Think if you analyse:

@ seen classes (for authorship attribution, we know all candidates, for
gender prediction, there is only fixed number of genres) or

@ unseen classes (unknown authors, age wasn't present in train data):

more difficult, requires tricks using features if data domain
@ Think about your target audience:

@ Is important only result (automatic data classification)? Experiment
with feature combinations and all possible features.

@ Do people want to examine results and evidence (court experties)?
Feature need be comprehensible (add explanations of tags, don't use
too complicated features). Be prepared to explain why was feature
selected (linguistic background).
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Thank you
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