08 – Extracting structured information from text IA161 Advanced Techniques of Natural Language Processing

V. Kovář

NLP Centre, FI MU, Brno

November 11, 2015

- What?
- Why?
- 3 How?
- 4 Notable systems
- 6 Accuracy
- 6 Conclusion

What?

What?

Fed Chairman
Ben Bernanke
said the U.S.
economy...
The euro rose to
\$1.2008,
compared to
\$1.1942
on Tuesday.

Facts.

Ben Bernanke is a Person.

Fed is an Organization.

The US is a Country.

Fed is located in the US.

Ben Bernanke is the US Fed Chairman.

\$1.2008 is an amount of money.

Why?

- Use in subsequent computer applications
 - information systems
 - question answering
 - automatic reasoning
 - automatic summarization
 - **.**..
- Disambiguate and shorten the information
- Highlight particular snippets of information
- Structured knowledge always better than natural language text

Successful information extraction systems

(behind the scenes)

Google

Prague Museums - Visitor Information - My Czech Republic www.myczechrepublic.com > Prague Guide > Museums & Galleries ▼ Museums in Prague National Museum. National Technical Museum and other

- IBM Watson
 - Jeopardy winner

Big data + "some" intelligence

Successful information extraction systems

- x.ai automatic personal assistant Amy
 - agrees automatically on meeting times
 - recognizes/asks for contact details
 - operates over Google calendar
- Extracting protein interaction from research texts
- Summarizing and filtering stock market news
- Extracting information about conflicts from news
- Smaller systems for more specialized tasks

How?

- Many variants of the task, depending on application
- Many different systems
- Inconsistent evaluation metrics
- MUC, TREC
 - Message Understanding Conference + Text REtrieval Conference
 - series of conferences starting in 80s and 90s
 - shared tasks + competition among systems
 - helped standardisation in the field

Usual description of the problem

- Identifying formal relations between objects in text
 - (has_lecture, Kovář, 11/11/2015 10:00, A219)
 - ► (attack, Turkey, ISIS)
- → Division into 2 main sub-tasks
- Named entity recognition
 - names, companies, time/place expressions
 - Turkey, ISIS, A219, Kovář, 11/11/2015
- Extraction of relations between named entities
 - also "event extraction" or "filling the gaps"
 - (who, did, what, when, where)

Methods

- Named entity recognition
 - finite patterns ('Mr.' capitalized_word+)
 - ▶ list of well-known entities (IBM, Ford, first names)
 - possibly trained automatically (decision trees, maximum entropy models, hidded Markov models)
- Relation extraction
 - noun phrase recognition
 - verb group recognition
 - ▶ → partial parsing
 - event recognition
 - rule-based or statistical
 - also statistical "bag of words" methods

Problems

- Anaphora/coreference resolution
 - relations may be based on more sentences
 - "Turkey made a ... It attacked the ISIS in the morning."
 - USA, United States, U.S., States
- Many possible expressions for one relation
 - "Turkey attacked ISIS positions"
 - "ISIS was attacked by Turkey"
 - "Turkey joined the war with ISIS"
 - **.**..
- Often need for inference
 - "Thomas J. Watson resigned as president of IBM, and Harriet Smith succeeded him."

Other notable systems

- Open Information Extraction (OIE), or TextRunner
 - openie.allenai.org
 - ▶ 100 million web pages
 - ▶ 500 million assertions
- GATE general architecture for text engineering
 - gate.ac.uk
 - huge system for language annotation and all levels of automatic processing
 - contains a customizable information extraction component
- EFa Extraction of Facts
 - nlp.fi.muni.cz/projects/set/efa
 - in NLP centre at FI
 - analysis of running text
 - syntactic analysis
 - phrase detection
 - semantic classification of phrases

Accuracy

- Still not very consistent evaluation metrics
- General texts
 - "fill in the gaps" task (as in MUCs): around 60 %
 - ► EFa precision of phrase detection and classification: 70 %
 - far from reliable and usable analysis
 - ▶ OIE reports over 80 % precision
- Specialized systems
 - simpler task, e.g. only dates, places, ...
 - e.g. Amy, the automated personal assistant
 - much better, human level accuracy

Information extraction – summary

- extracting structured information from text
- named entity detection + relation extraction
- successful in very specialized tasks, not very usable in general tasks

References I

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).

Open information extraction for the web.

IJCAI, 7:2670-2676.

Chang, C.-H., Kayed, M., Girgis, M. R., and Shaala, K. F. (2006).

A survey of web information extraction systems.

Knowledge and Data Engineering, IEEE Transactions on, 18(10):1411–1428.

Cunningham, H. (2005).

Information Extraction, Automatic.

Encyclopedia of Language and Linguistics, 2nd Edition.

References II

In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, EMNLP '11, pages 1535–1545, Stroudsburg, PA, USA. Association for Computational Linguistics.

The Oxford handbook of computational linguistics. Oxford University Press.