Indexing and Searching Very Large Texts IA161 Advanced Techniques of Natural Language Processing

Miloš Jakubíček

Centrum zpracování přirozeného jazyka Fakulty informatiky, Masarykova univerzita jak@fi.muni.cz

30. listopadu 2015

イロト イヨト イヨト イヨ

NLP FLMU Brno

Miloš Jakubíček

・ロン ・回 と ・ヨン ・ ヨン

NLP FLMU Brno

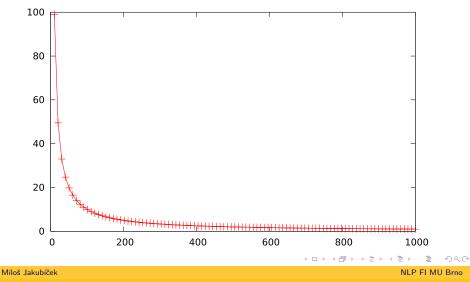
Searching big text corpora

Corpus:

- positional attributes word form, lemma, PoS tag,
- structures and structure attributes documents (e.g. with author, id, year, ...), paragraph, sentence
- searching: Manatee/Bonito/Sketch Engine
- http://corpora.fi.muni.cz
- http://the.sketchengine.co.uk

Miloš Jakubíček

Searching big text corpora


- data too big to be stored in memory
- data too big to be search sequentially
- \Rightarrow preprocessing needed (indexing, alias corpus compilation)
 - key decisions are:
 - trade off between compile-time (preprocessing) and run-time

・ロン ・回 と ・ヨン ・ ヨン

NLP FL MU Brno

trade off between in memory and off-memory processing

Zipf's law I

Zipf's law II

may be simplified to inductive definition:

Zipf's law (simplified)

frequency of the *n*-th element $f_n \approx \frac{1}{n} \cdot f_1$

- \blacksquare \Rightarrow frequency is inversely proportional to the rank according to frequency
- ⇒ one needs really large corpora to capture all the variety of many language phenomena

・ロト ・回ト ・ヨト ・ヨト

3

NLP FLMU Brno

 \blacksquare \Rightarrow implications for text indexing

Zipf's law III

	req
NN 16	1881
NP 6	2669
NNS 5	i6629
VVN 2	7545
VV <u>2</u>	7481
VVD 2	7391
VVG 1	<u>6922</u>
VBD 1	3275
VBZ 1	<u>1321</u>
VVZ	<u>8254</u>
VVP	<u>7912</u>
VB	<u>6377</u>
VBP	<u>5211</u>
VHD	<u>5190</u>
VHZ	<u>2497</u>
VBN	<u>2470</u>
VHP	<u>2445</u>
VH	1780
NPS	<u>1524</u>
VBG	<u>674</u>
VHG	<u>279</u>
VHN	<u>194</u>

Substantives + Verb tags on the Brown corpus \rightarrow $\equiv \rightarrow = -9$

Miloš Jakubíček

NLP FI MU Brno

NLP FLMU Brno

Building corpora

- content definition (what will it be used for? how do I get texts?)
- 2 obtaining data (e.g. crawling)
- 3 data cleaning (spam, boilerplate, duplicates)
- 4 tokenization
- 5 sentence segmentation
- 6 further annotation (PoS tagging)
- 7 corpus indexing and analysis

Miloš Jakubíček

NLP FLMU Brno

Building corpora

- content definition (what will it be used for? how do I get texts?)
- 2 obtaining data (e.g. crawling)
- 3 data cleaning (spam, boilerplate, duplicates)
- 4 tokenization
- 5 sentence segmentation
- 6 further annotation (PoS tagging)
- 7 corpus indexing and analysis

NLP FLMU Brno

Corpus indexing

- text corpus is a database
- standard (=relational) database management systems are not suitable at all
 - text corpus does not have relational nature
- special database management systems needed
- \Rightarrow Manatee

Indexing corpora in Manatee

Key data structures for a positional attribute:

- lexicon
 - because operations on numbers are just so much faster than on strings

・ロト ・回ト ・ヨト・

NLP FLMU Brno

- corpus text
 - to iterate over positions
- inverted (reversed) index
 - to give fast access to positions for a given value

Miloš Jakubíček

NLP FLMU Brno

How to store integer numbers

- given Zipf's distribution: fixed-length storing very inefficient
- variable-length more complicated but yielding much smaller and quicker indices
- variable-length bit-wise universal Elias' codes: gamma, delta codes
- cf. Huffman coding

Miloš Jakubíček

・ロン ・回 と ・ヨン ・ ヨン

NLP FLMU Brno

Indexing corpora in Manatee

Structures and operations:

- operations in between: string (str) number (id) position
 (poss)
- lexicon building: \Rightarrow word-to-id mapping \Rightarrow operations on numbers, not strings \Rightarrow id2str, str2id
- inverted index: id2poss
- corpus text: pos2id
- yields transitively also pos2str, str2poss

・ロン ・回 と ・ヨン ・ ヨン

NLP FLMU Brno

Searching corpora in Manatee

- key idea: operations on sorted forward-only streams of positions
- FastStream single position stream
- RangeStream stream of position pairs (structures: from position, to position)

CQL

- \blacksquare = Corpus Query Language (Christ and Schulze, 1994)
- positions and positional attributes: [attr="value"]
- structures and structural attributes: <str attr="value»</p>
- example:

established a within <str/> query:

[tag="N.*"]+ within <s/>

and alternative meet/union query:

・ロト ・回ト ・ヨト ・ヨト

NLP FLMU Brno

Miloš Jakubíček

・ロン ・回 と ・ヨン ・ ヨン

NLP FL MU Brno

CQL in Manatee/Bonito

- ehnancements and differences to the original CQL syntax
- within <query> and containing <query>
- meet/union (sub)query
- inequality comparisons
- frequency function

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

NLP FLMU Brno

within/containing queries

searching for particles:

[tag="PR.*"] within [tag="V.*"] [tag="ATO"]?
[tag="AJO"]* [tag="(PR.?|N.*)"] [tag="PR.*"]
within <s/>

 searching for a Czech idiom "hnout někomu žlučí" ("to get somebody's goat"): word-by-word translated as: hnout "move" [V, infinitive] někomu "somebody" [N, dative] žlučí "bile" [N, instrumental].

```
<s/> containing [lemma="hnout"] containing
[tag=".*c3.*"] containing [word="žlučí"]
```

・ロト ・回ト ・ヨト ・ヨト

Э

NLP FLMU Brno

within/containing queries

- structure boundaries: begin: <str>, whole structure: <str/>, end: </str>
- changes: within <str> not allowed anymore, use within <str/><</p>

・ロト ・回ト ・ヨト ・ヨト

NLP FLMU Brno

meet/union queries

- combined with regular query: <s/>
 - containing (meet [lemma="have"] [tag="P.*"] -5 5)
 containing (meet [tag="N.*"] [lemma="blue"])
- changes: meet/union queries can be used on any position, they can contain labels and no MU keyword is required (and deprecated):

(meet 1:[] 2:[]) & 1.tag = 2.tag

Miloš Jakubíček

<ロ> <回> <回> <回> <回> <回> <回> <回</p>

NLP FLMU Brno

Inequality comparisons

- former comparisons allowed only equality and its negation: [attr="value"] [attr!="value"]
- inequality comparisons implemented: [attr<="value"]
 [attr>="value"] [attr!<="value"] [attr!>="value"]
- intended usage:

[tag="AJ.*"] [tag="NN.*"] within <doc year>="2009»

 sophisticated comparison performed on the attribute value: <doc id<="CC20101031B» matches e.g. BB20101031B, CC20091031B, CC20101030B CC20101031A.

Fixed string comparisons

- normally the CQL values are regular expressions
- sometimes this is not desirable (batch processing needs escaping of metacharacters)
- new == and !== operator introduced for fixed strings comparison
- no escaping needed except for '" and '\'
- examples: ".", "\$", " "matches a single dot, dollar sign and tilda, respectively, "\n"matches a backslash followed by the character n,

・ロト ・回ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

3

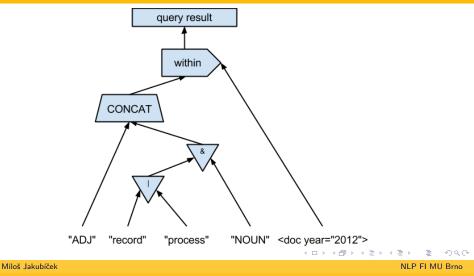
NLP FLMU Brno

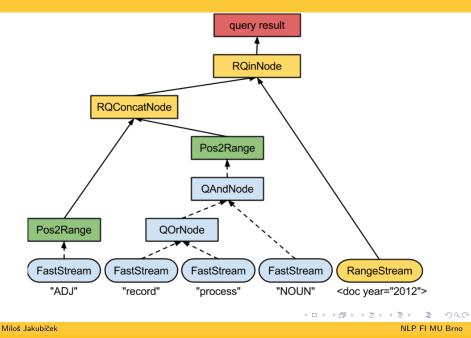
Frequency function

- a frequency constraint allowed in the global conditions part of CQL:
- 1:[tag="PP.*"] 2:[tag="NN.*"] & f(1.word) > 10

Performance evaluation

Tabulka: Query performance evaluation – corpora legend: \circ BNC (110M tokens), \bullet BiWeC (version with 9.5G tokens), \ast Czes (1.2G tokens)


query	# of results	time (m:s)
<pre>o [lemma="time"]</pre>	179,321	0.07
• [lemma="t.*"]	14,660,881	3.12
• Ex: particles	1,219,973	33.36
• Ex: particles	97,671,485	32:26.48
* Ex: idioms	66	1:6.86
\circ Ex: meet/union	3	8.47
• Ex: meet/union	1457	7:13.12


NLP FL MU Brno

Miloš Jakubíček

CQL query evaluation

Example: [tag="ADJ"] [(word="record" | word="process") & tag="NOUN"] within <doc year="2012"/>

Today's Corpora in Sketch Engine

- LARGE (= billions of tokens, and it's going to be worse)
- complex multi-level multi-value annotation
- wide range of languages
- growing demand on complex searching moving from morphology to syntax and semantics
- search API for automatic information retrieval and post-processing in particular applications needed

・ロン ・回 と ・ヨン ・ ヨン