Notes

Milo$ Jakubicek

RIS D
s 4

Z,

SaeFicy,
$
“y. ;.y;)\ﬁf‘&

&

&
%’TAS s

Centrum zpracovani pfirozeného jazyka
Fakulty informatiky, Masarykova univerzita
jak@fi.muni.cz

30. listopadu 2015

<O «@r <=

it
9
5
?

Notes
Corpus:

m positional attributes — word form, lemma, PoS tag,

m structures and structure attributes — documents (e.g. with
author, id, year,

..), paragraph, sentence
m searching: Manatee/Bonito/Sketch Engine

m http://corpora.fi.muni.cz

m http://the.sketchengine.co.uk

<o <@

it
O
»
?

Notes
m data too big to be stored in memory

m data too big to be search sequentially

= preprocessing needed (indexing, alias corpus compilation)
m key decisions are:

m trade off between compile-time (preprocessing) and run-time

m trade off between in memory and off-memory processing

<O <@ <=

| |
it

DA

http://corpora.fi.muni.cz
http://the.sketchengine.co.uk

100

80
60
40

20

I t s
0 200 400 600 800 1000

m may be simplified to inductive definition:

frequency of the n-th element f, = %

m = frequency is inversely proportional to the rank according to
frequency

m = one needs really large corpora to capture all the variety of
many language phenomena

m = implications for text indexing

NNS 56629

NPS 1524

154 Substantives + Verb tags on the Brown <orpus

it

Notes

Notes

Notes

content definition (what will it be used for? how do | get
texts?)

obtaining data (e.g. crawling)

data cleaning (spam, boilerplate, duplicates)
tokenization

sentence segmentation

further annotation (PoS tagging)

corpus indexing and analysis

<O <@Fr < Er o<

g
it
9
r
?

content definition (what will it be used for? how do | get
texts?)

obtaining data (e.g. crawling)

data cleaning (spam, boilerplate, duplicates)
tokenization

sentence segmentation

further annotation (PoS tagging)

H corpus indexing and analysis

m text corpus is a database

m standard (=relational) database management systems are not
suitable at all

m text corpus does not have relational nature
m special database management systems needed
= Manatee

<O <@ <=0 o4

g
it
9
r
?

Notes

Notes

Notes

m lexicon

Key data structures for a positional attribute:

on strings
m corpus text

m to iterate over positions

Notes
m because operations on numbers are just so much faster than
m inverted (reversed) index

m to give fast access to positions for a given value

«Or «@> «Er» «Er» B DAX

m given Zipf's distribution: fixed-length storing very inefficient
and quicker indices

m cf. Huffman coding

Notes
m variable-length more complicated but yielding much smaller
m variable-length bit-wise universal Elias’ codes: gamma, delta
codes

Structures and operations:

(poss)

m operations in between: string (str) — number (id) — position

Notes
m lexicon building: = word-to-id mapping = operations on
numbers, not strings = id2str, str2id
m inverted index: id2poss
m corpus text: pos2id

m yields transitively also pos2str, str2poss

«O>r «r «EHr A EH E DA

m key idea: operations on sorted forward-only streams of
positions

m FastStream — single position stream

m RangeStream — stream of position pairs (structures: from
position, to position)

<O <@Fr < Er o<

g
it
9
5
?

m = Corpus Query Language (Christ and Schulze, 1994)
m positions and positional attributes: [attr="value"]
m structures and structural attributes: <str attr="value»
m example:

[word=".*ing"& tag="V.x*"]

<doc id="20[5-9].%"

m established a within <str/> query:

[tag="N.*"]+ within <s/>

and alternative meet/union query:
(meet [lemma="take"] [tag="N.*"] -5 +5)
(union (meet ...) (meet ...))

o> «Fr <= (E»

it
O
»
?

m ehnancements and differences to the original CQL syntax
m within <query> and containing <query>

m meet/union (sub)query

m inequality comparisons

m frequency function

<O <@ <=0 o4

it
9
5
?

Notes

Notes

Notes

m searching for particles:

[tag="PR.*"] within [tag="V.*"] [tag="ATO0"]?
[tag="AJ0"]1* [tag="(PR.?7IN.*)"] [tag="PR.x"]
within <s/>

m searching for a Czech idiom “hnout nékomu Zlu&” (“to get
somebody'’s goat”):
word-by-word translated as:
hnout “move” [V, infinitive]
nékomu “somebody” [N, dative]
Zlu¢i “bile” [N, instrumental].

<s/> containing [lemma="hnout"] containing
[tag=".*c3.*"] containing [word="Zlu&i"]

«CO> B> «Er B>

m structure boundaries: begin: <str>, whole structure: <str/>,
end: </str>

m changes: within <str> not allowed anymore, use within
<str/>

m combined with regular query: <s/>
containing (meet [lemma="have"] [tag="P.*"] -5 5)
containing (meet [tag="N.*"] [lemma="blue"])

m changes: meet/union queries can be used on any position,

they can contain labels and no MU keyword is required (and
deprecated):

(meet 1:[] 2:[]) & 1.tag = 2.tag

<O <@ <=0 o4

it
9
5
?

Notes

Notes

Notes

m former comparisons allowed only equality and its negation:
[attr="value"] [attr!="value"]

m inequality comparisons implemented: [attr<="value"]
[attr>="value"] [attr!<="value"] [attr!>="value"]
m intended usage:

[tag="AJ.*"] [tag="NN.*"] within <doc year>="2009»

m sophisticated comparison performed on the attribute value:
<doc 1d<="CC20101031B» matches e.g. BB20101031B,
CC20091031B, CC20101030B CC20101031A.

m normally the CQL values are regular expressions

m sometimes this is not desirable (batch processing needs
escaping of metacharacters)

m new == and !== operator introduced for fixed strings
comparison

m no escaping needed except for ' and '\’

m examples: ".", "$", " "matches a single dot, dollar sign and

tilda, respectively, "\n"matches a backslash followed by the
character n,

m a frequency constraint allowed in the global conditions part of
CQL:

1:[tag="PP.*"] 2:[tag="NN.*"] & f(1.word) > 10

<O <@ <=0 o4

it
9
5
?

Notes

Notes

Notes

Indexing Searching

Performance evaluation

Tabulka: Query performance evaluation — corpora legend: o BNC (110M
tokens), ® BiWeC (version with 9.5G tokens), * Czes (1.2G tokens)

[query | # of results | time (m:s) |
o [lemma="time"] 179,321 0.07
o [lemma="t.*"] 14,660,881 3.12
o Ex: particles 1,219,973 33.36
e Ex: particles 97,671,485 32:26.48
* Ex: idioms 66 1:6.86
o Ex: meet/union 3 8.47
e Ex: meet/union 1457 7:13.12
Milo$ Jakubicek NLP FI MU Brno

Indexing and Searching Very Large Texts

Indexing Searching

CQL query evaluation

Example: [tag="ADJ"] [(word="record" | word="process") & tag="NOUN"] within <doc year="2012"/>

query result

within

CONCAT

"ADJ" ‘"record" "process" "NOUN" <doc year="2012">

Milo§ Jakubitek NLP FI MU Brno
Indexing and Searching Very Large Texts

Indexing Searching

RQinNode

RQConcatNode

QAndNode

- ~

- N
| Pos2Range | | QOrNode | . .
[y PN S
' - ~. ~
(FastSlream) (FastSlream) (FastStream) (FastSlream) CRangeStream)
"ADJ" "record" "process” "NOUN" <doc year="2012">
Milo$ Jakubiek NLP FI MU Brno

Indexing and Searching Very Large Texts

Notes

Notes

Notes

Indexing Searching

Today's Corpora in Sketch Engine

Notes

LARGE (= billions of tokens, and it's going to be worse)

complex multi-level multi-value annotation

wide range of languages

growing demand on complex searching — moving from
morphology to syntax and semantics

search API for automatic information retrieval and
post-processing in particular applications needed

Milog Jakubiéek NLP FI MU Brno
Indexing and Searching Very Large Texts

Notes

Notes

	Indexing
	Searching

