09 – Language modelling
IA161 Advanced Techniques of Natural Language Processing

V. Baisa, P. Rychlý

NLP Centre, FI MU, Brno

December 3, 2020
1 Introduction to Language Modelling

2 N-grams

3 Evaluation of Language Models

4 Neural Networks and Language Modelling

5 Practical part: generating random texts
Language models—what are they good for?

- assigning scores to sequences of words
- predicting words
- generating text

⇒

- statistical machine translation
- automatic speech recognition
- optical character recognition
Predicting words

Do you speak ...
Would you be so ...
Statistical machine ...
Faculty of Informatics, Masaryk ...
WWII has ended in ...
In the town where I was ...
Lord of the ...
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describes without errors</td>
<td>A person riding a motorcycle on a dirt road.</td>
</tr>
<tr>
<td>Describes with minor errors</td>
<td>Two dogs play in the grass.</td>
</tr>
<tr>
<td>Somewhat related to the image</td>
<td>A skateboarder does a trick on a ramp.</td>
</tr>
<tr>
<td>Unrelated to the image</td>
<td>A dog is jumping to catch a frisbee.</td>
</tr>
<tr>
<td></td>
<td>A group of young people playing a game of frisbee.</td>
</tr>
<tr>
<td></td>
<td>Two hockey players are fighting over the puck.</td>
</tr>
<tr>
<td></td>
<td>A little girl in a pink hat is blowing bubbles.</td>
</tr>
<tr>
<td></td>
<td>A refrigerator filled with lots of food and drinks.</td>
</tr>
<tr>
<td></td>
<td>A herd of elephants walking across a dry grass field.</td>
</tr>
<tr>
<td></td>
<td>A close up of a cat laying on a couch.</td>
</tr>
<tr>
<td></td>
<td>A red motorcycle parked on the side of the road.</td>
</tr>
<tr>
<td></td>
<td>A yellow school bus parked in a parking lot.</td>
</tr>
</tbody>
</table>
Road hauliers are seeking, and in many cases obtaining, increases in rates ranging from 3 per cent. to 6 per cent.

This emerged yesterday from an area by area survey carried out by THE FINANCIAL TIMES, a fortnight after publication of the report of the National Board for Prices and Incomes on the road haulage industry.

Hauliers claimed that the report was having the effect of prolonging negotiations, but said they were confident that eventually they would win rises of the size they originally contemplated.

Meanwhile, representatives of the Road Haulage Association may discuss aspects of the N.B.P.I. report with union officials in London to-day at the inaugural meeting of the industry’s new 24-strong negotiating committee.

This body, which was established some weeks ago, is the one on
Language models – probability of a sentence

- LM is a probability distribution over all possible word sequences.
- What is the probability of utterance of s?

Probability of sentence

\[
p_{LM}(\text{Catalonia President urges protests})
\]

\[
p_{LM}(\text{President Catalonia urges protests})
\]

\[
p_{LM}(\text{urges Catalonia protests President})
\]

...

Ideally, the probability should strongly correlate with fluency and intelligibility of a word sequence.
N-gram models

- an approximation of long sequences using short n-grams
- a straightforward implementation
- an intuitive approach
- good local fluency

Randomly generated text

“Jsi nebylo vidět vteřin přestal po schodech se dal do deníku a položili se táhl ji viděl na konci místnosti 101,” řekl důstojník.

Hungarian

A társaság kötelezettségeiéért kapta a középkori temploma az volt, hogy a felhasználók az adottságai, a felhasználó azonosítása az egyesület alapszabályát.
N-gram models, naïve approach

\[W = w_1, w_2, \ldots, w_n \]

\[p(W) = \prod_i p(w_i | w_1 \cdots w_{i-1}) \]

Markov’s assumption

\[p(W) = \prod_i p(w_i | w_{i-2}, w_{i-1}) \]

\[p(\text{this is a sentence}) = p(\text{this}) \times p(\text{is} | \text{this}) \times p(\text{a} | \text{this, is}) \times p(\text{sentence} | \text{is, a}) \]

\[p(a | \text{this, is}) = \frac{|\text{this is a}|}{|\text{this is}|} \]

Sparse data problem.
Computing, LM probabilities estimation

Trigram model uses 2 preceding words for probability learning. Using maximum-likelihood estimation:

\[p(w_3 | w_1, w_2) = \frac{\text{count}(w_1, w_2, w_3)}{\sum_w \text{count}(w_1, w_2, w)} \]

quadrigram: \((\text{lord}, \text{of}, \text{the}, ?)\)

<table>
<thead>
<tr>
<th>(w)</th>
<th>\text{count}</th>
<th>(p(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>rings</td>
<td>30,156</td>
<td>0.425</td>
</tr>
<tr>
<td>flies</td>
<td>2,977</td>
<td>0.042</td>
</tr>
<tr>
<td>well</td>
<td>1,536</td>
<td>0.021</td>
</tr>
<tr>
<td>manor</td>
<td>907</td>
<td>0.012</td>
</tr>
<tr>
<td>dance</td>
<td>767</td>
<td>0.010</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Large LM – n-gram counts

How many unique n-grams in a corpus?

<table>
<thead>
<tr>
<th>order</th>
<th>unique</th>
<th>singletons</th>
</tr>
</thead>
<tbody>
<tr>
<td>unigram</td>
<td>86,700</td>
<td>33,447 (38.6%)</td>
</tr>
<tr>
<td>bigram</td>
<td>1,948,935</td>
<td>1,132,844 (58.1%)</td>
</tr>
<tr>
<td>trigram</td>
<td>8,092,798</td>
<td>6,022,286 (74.4%)</td>
</tr>
<tr>
<td>4-gram</td>
<td>15,303,847</td>
<td>13,081,621 (85.5%)</td>
</tr>
<tr>
<td>5-gram</td>
<td>19,882,175</td>
<td>18,324,577 (92.2%)</td>
</tr>
</tbody>
</table>

Corpus: Europarl, 30 M tokens.
Language models smoothing

The problem: an n-gram is missing in the data but is in a sentence →
\(p(\text{sentence}) = 0 \).

We need to assign non-zero \(p \) for unseen data. This must hold:

\[\forall w. p(w) > 0 \]

The issue is more pronounced for higher-order models.

Smoothing: an attempt to amend real counts of n-grams to expected
counts in any (unseen) data.

Add-one, Add-\(\alpha \), Good–Turing smoothing
We can find unseen n-grams in another corpus. N-grams contained in one of them and not in the other help us to estimate general amount of unseen n-grams.

E.g. bigrams not occurring in a training corpus but present in the other corpus million times (given the amount of all possible bigrams equals 7.5 billions) will occur approx.

\[
\frac{10^6}{7.5 \times 10^9} = 0.00013 \times
\]

\[\times\]
Interpolation and back-off

Previous methods treated all unseen n-grams the same. Consider trigrams

beautiful young girl
beautiful young granny

Despite we don’t have any of these in our training data, the former trigram should be more probable.

We will use probability of lower order models, for which we have necessary data:

youn young girl
youn young granny
beautiful young
Interpolation

\[p_I(w_3|w_1w_2) = \lambda_1 p(w_3) \times \lambda_2 p(w_3|w_2) \times \lambda_3 p(w_3|w_1w_2) \]

If we have enough data we can trust higher order models more and assign a higher significance to corresponding n-grams.

\(p_I \) is probability distribution, thus this must hold:

\[
\forall \lambda_n : 0 \leq \lambda_n \leq 1 \\
\sum_{n} \lambda_n = 1
\]
Quality and comparison of LMs

We need to compare quality of various LM (various orders, various data, smoothing techniques etc.)

1) extrinsic (WER, MT, ASR, OCR) and 2) intrinsic (perplexity) evaluation

A good LM should assign a higher probability to a good (looking) text than to an incorrect text. For a fixed test text we can compare various LMs.
Cross-entropy

\[H(p_{LM}) = - \frac{1}{n} \log p_{LM}(w_1, w_2, \ldots, w_n) \]

\[= - \frac{1}{n} \sum_{i=1}^{n} \log p_{LM}(w_i|w_1, \ldots, w_{i-1}) \]

Cross-entropy is average value of negative logarithms of words probabilities in testing text. It corresponds to a measure of uncertainty of a probability distribution. **The lower the better.**

A good LM should reach entropy close to real entropy of language. That can’t be measured directly but quite reliable estimates exist, e.g. Shannon’s game. For English, entropy is estimated to approx. 1.3 bit per letter.
Perplexity

\[PP = 2^{H(p_{LM})} \]

Perplexity is a simple transformation of cross-entropy.

A good LM should not waste \(p \) for improbable phenomena.

The lower entropy, the better \(\rightarrow \) the lower perplexity, the better.
Comparing smoothing methods (Europarl)

<table>
<thead>
<tr>
<th>method</th>
<th>perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>add-one</td>
<td>382.2</td>
</tr>
<tr>
<td>add-(\alpha)</td>
<td>113.2</td>
</tr>
<tr>
<td>deleted est.</td>
<td>113.4</td>
</tr>
<tr>
<td>Good–Turing</td>
<td>112.9</td>
</tr>
</tbody>
</table>
Neural Networks

- no probabilities, only scores
- One-hot representation of words: [0 0 0 0 0 0 1 0 0 0 0]
- adapting a model means changes in the whole network
Distributional Representation of Words

- goal: more compact representation of vectors
- limited dimensionality (500–1000)
- [Mikolov et al., 2013]
- word vectors capture many linguistic properties (gender, tense, plurality, even semantic concepts like “capital city of”)

![Diagram showing relationships between words like woman, man, uncle, aunt, king, queen, and kings, queens.](image-url)
Features: vector arithmetics I
Features: vector arithmetics II
State-of-the-art neural models

Using context to compute token/sentence/document embedding via transformers. [Vaswani et al., 2017]

- BERT = Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
- GPT = Generative Pre-trained Transformer [Brown et al., 2020]
- many variants: tokenization, attention, encoder/decoder connections
BERT

- Google
- pre-training on raw text
- masking tokens, is-next-sentence
- big pre-trained models available
- domain (task) adaptation

Input: The man went to the [MASK]$_1$. He bought a [MASK]$_2$ of milk.

Labels: [MASK]$_1$ = store; [MASK]$_2$ = gallon

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
GPT

- Open AI
- GPT-2: 1.5 billion parameters
- GPT-3: 175 billion parameters
- very good text generation
 → potentially harmful applications
- Misuse of Language Models
- bias – generate stereotyped or prejudiced content: gender, race, religion
- Sep 2020: Microsoft have ”exclusive” use of GPT-3
T5: Text-To-Text Transfer Transformer

- Google AI
- transfer learning
- C4: Colossal Clean Crawled Corpus

"translate English to German: That is good."
"cola sentence: The course is jumping well."
"stsbt sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."
"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."
"Das ist gut."
"not acceptable"
"3.8"
"six people hospitalized after a storm in attala county."
Evaluation of language models

- standard multi-task benchmarks
- GLUE (https://gluebenchmark.com)
- SuperGLUE (https://super.gluebenchmark.com)
- XTREME Cross-Lingual Transfer Evaluation of Multilingual Encoders (https://sites.research.google/xtreme)
- perplexity is not used anymore
Libraries and Frameworks

- Dive into Deep Learning: online book
 https://d2l.ai
- Hugging Face Transformers: many ready to use models
 https://huggingface.co/transformers
- jiant: library, many tasks for evaluation
 https://jiant.info
- GluonNLP: reproduction of latest research results
 https://nlp.gluon.ai
- low level libraries: NumPy, PyTorch, TensorFlow, MXNet
References I

BERT-like language model from scratch

The goal of the task is:

- create a BERT-like language model from own data
- investigate tokenization
- fine tune parameters
- fill mask experiments
- text generation experiments
BERT-like language model from scratch

Modification of 01_how-to-train.ipynb notebook from https://huggingface.co/transformers/examples.html

- https://colab.research.google.com/drive/1f0fMlud37ybxDdW1RN08ZkfQ-rJoSkHv?usp=sharing
- Small text for setup: RUR from Project Gutenberg https://www.gutenberg.org/files/13083/13083-0.txt
- Create a model for Czech Europarl data from one of:
 - https://corpora.fi.muni.cz/ces-1m.txt (1 MB)
 - https://corpora.fi.muni.cz/ces-10m.txt (10 MB)
 - https://corpora.fi.muni.cz/ces-150m.txt (150 MB)
- Tune parameters (vocab size, training args, ...) to get reasonable answer to simple fill mask question.
 fill_mask("směrnice je určena členským <mask>")