01 – Opinion mining, sentiment analysis
IA161 Advanced Techniques of Natural Language Processing

Z. Nevěřilová

NLP Centre, FI MU, Brno

September 18, 2019
Opinion mining, sentiment analysis

Example 1:

So boring. I enjoyed the first book but this one really didn’t work for me. The story, characters, and relationships all fell flat.

Example 2:

Lair of Dreams like everything else Miss Bray writes is mind-boggling. It’s big. It’s insanely atmospheric and it’s creeptastic.\(^1\)

\(^1\)both examples from goodreads.com
Opinion mining, sentiment analysis

Example 1:

*So boring. I enjoyed the first book but this one really didn’t work for me. The story, characters, and relationships all fell flat.*

Example 2:

*Lair of Dreams like everything else Miss Bray writes is mind-boggling. It’s big. It’s insanely atmospheric and it’s creeptastic.*

---

this book: boring  
first book: enjoyed  
this book: did not work  
story: flat  
characters: flat  
relationships: flat

Lair of Dreams: mind-boggling  
LoD: big  
LoD: insanely atmospheric  
LoD: creeptastic

---

¹both examples from goodreads.com
1. Opinion mining, sentiment analysis

2. Applications of opinion mining

3. Problem definition

4. Methods
Opinion mining / sentiment analysis:

Given a set of subjective texts that express opinions about a certain object, the purpose is to extract those attributes (features) of the object that have been commented on in the given texts and to determine whether these texts are positive, negative or neutral. [Dinu and Iuga, 2012]
Automatic opinion mining: why?

- many subjective texts exist
- mostly because of social media
  - people express their opinions in texts
  - one’s opinions influence others’ opinions
  - aggregation of opinions
- emotions make part of a decision process (see [Minsky, 2007])

“Opinions” are key influencers of our behaviors. [Liu, 2012]
Opinion mining: applications

![Opinion mining application example](image)

- **@ana_adi**: 18.11% positive, 81.10% neutral, 0.79% negative
  - @ana_adi: no problem, would love to see your thoughts and votes on [link](http://twentyteef.uservoice.com). #pleasesupport (view)
  - @katcpn: @karyd @ana_adi @thestlusivelife @alexconde after #smmeasure yesterday, I'd love to hear your thoughts on this: [link](http://ow.ly/36cow) (view)
  - @Aditya thanks! have a great weekend. rt @tabishb: #ff amfunderburk1
  - @ana_adi: When Mon appears back on your radar, be sure to join #smcedu chat 12:30pmET w/guest host @ana_adi [link](http://bit.ly/9NlhG1) (view)
  - @ana_adi: I would think as an influencer you would tell someone you weren’t interested over writing a bad review. cc: @casliestewart? (view)

**Search terms and analysis**

<table>
<thead>
<tr>
<th>Searched Term</th>
<th>Positive Tweets</th>
<th>Neutral Tweets</th>
<th>Negative Tweets</th>
<th>Total Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ana_adi</td>
<td>23</td>
<td>103</td>
<td>1</td>
<td>127</td>
</tr>
</tbody>
</table>

**Analysis**

- Positive tweets: 23
- Neutral tweets: 103
- Negative tweets: 1
- Total tweets: 127

**Ad by Google**

View ads about:
Opinion mining: applications
# Opinion mining: applications

**MALL.cz**

![MALL.cz logo with 91% rating](image)

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cena a termín dodání</td>
<td>★★★★★</td>
<td>(4237)</td>
</tr>
<tr>
<td>Komunikace e-shopu</td>
<td>★★★★★</td>
<td>(4163)</td>
</tr>
<tr>
<td>Obsah zásilky</td>
<td>★★★★★</td>
<td>(4113)</td>
</tr>
<tr>
<td>Zkušenost s vrácením zboží</td>
<td>★★★★☆</td>
<td>(579)</td>
</tr>
<tr>
<td>Zkušenost s reklamací</td>
<td>★★★★☆</td>
<td>(518)</td>
</tr>
</tbody>
</table>

**Platba:** On-line platby (PaySec, Raiffeisen banka), Platba kartou (Euro Card, Maestro, Master Card, VISA,...

**Hodnocení**

- **jirichott**: ★★★★★
  - **Kritika:** Nakupovat na MALLcz už nikdy! Jednou jsem to zkusila, bylo katastrofa. NEDOPORUČUJI!!!!!

- **Lucie.P**: ★★★★★ (ověřený zákazník)
  - **Chvála:** velice spokojená

- **Jerry**: ★★★★★ (ověřený zákazník)
  - **Kritika:** Místo objednaného zboží došlo něco zcela jiného, čímž jsem zaučena. Po několika týdnech jsem zjistila, že zboží vůbec nemají a tu více... :-)

---

**Z. Nevěřilová**

IA161 Advanced NLP

01 – Opinion mining, sentiment analysis
Přehled recenzí

5 ★
4 ★
3 ★
2 ★
1 ★

3,8 ★★★★★

Pokoje · 2,2 ★★★★★
Někteří hosté uvedli, že koupelny jsou malé a že by mohly být čistější. · Z pokojů byl pěkný výhled.

Lokalita · 4,2 ★★★★★
Blízko zastávky veřejné dopravy. · Poblíž jsou obchody, pamětihodnosti, restaurace a bary. · Snadno dostupné autem

Služby a vybavení · 4,2 ★★★★★
Hostům se líbí přátelský a profesionální personál. · Hostům se líbila sauna a fitness centrum. · Hostům se líbila správa a recepce, ale někteří uvedli, že úklid by mohl být lepší.
Opinion mining: related applications

- document sentiment classification: 
  *This document contains a lot of negative statements.*

- sentence subjectivity classification: 
  *This sentence is objective.*

- aspect-based opinion summarization/aggregation: 
  *Most customers of your company think that the communication is not good.*

- mining comparative opinions: 
  *Many people think that iPhone is better than SG.*

- utility or helpfulness of reviews: 
  *This review is useless.*

- cross-lingual opinion mining
Problem definition

What is an opinion?

- an evaluating proposition: *Linux is great.*
- a comparative proposition: *Linux is better than Windows.*
Problem definition

What is an opinion?

- an evaluating proposition: *Linux is great*.
- a comparative proposition: *Linux is better than Windows*.

*An opinion is simply a positive or negative sentiment, view, attitude, emotion, or appraisal about an entity or an aspect of the entity from an opinion holder.* [Liu, 2012]
Problem definition

What is an opinion?

- an evaluating proposition: *Linux is great.*
- a comparative proposition: *Linux is better than Windows.*

An opinion is simply a **positive or negative** sentiment, view, attitude, emotion, or appraisal about an **entity** or an **aspect of the entity** from an **opinion holder.** [Liu, 2012]

- **entity** $e$ is a product, person, event, organization, or topic: iPhone, Madonna, Microsoft . . .
- **aspect** $a$ (feature) is a component of $e$ or attribute of $e$: battery, price, appearance, communication skills . . .
Problem definition

\[
\text{opinion} = (e_j, a_{jk}, s_{ijkl}, h_i, t_l), \text{ where}
\]

- \(e_j\) is a target entity.

- \(a_{jk}\) is an aspect/feature of the entity \(e_j\).

- \(s_{ijkl}\) is the sentiment value of the opinion from the opinion holder \(h_i\) on feature \(a_{jk}\) of entity \(e_j\) at time \(t_l\).

- \(h_i\) is an opinion holder.

- \(t_l\) is the time when the opinion is expressed.
Problem definition

\[
\text{opinion} = (e_j, a_{jk}, so_{ijkl}, h_i, t_l), \text{ where}
\]

- \(e_j\) is a target entity.

- \(a_{jk}\) is an aspect/feature of the entity \(e_j\).

- \(so_{ijkl}\) is the sentiment value of the opinion from the opinion holder \(h_i\) on feature \(a_{jk}\) of entity \(e_j\) at time \(t_l\).

- \(h_i\) is an opinion holder.

- \(t_l\) is the time when the opinion is expressed.

not just one problem
Problem definition

opinion = (e_j, a_{jk}, s_{ijkl}, h_i, t_l), where

- e_j is a target entity. 
  named entity recognition
- a_{jk} is an aspect/feature of the entity e_j. 
  information extraction
- s_{ijkl} is the sentiment value of the opinion from the opinion holder h_i on feature a_{jk} of entity e_j at time t_l. 
  sentiment identification
- h_i is an opinion holder. 
  information extraction
- t_l is the time when the opinion is expressed. 
  information extraction

not just one problem
anaphora resolution + synonym matching
Problem granularity

Generally, find structure in unstructured data (text)

- document level opinion mining: The document is negative.
- sentence level: The sentence is negative.
- object/entity and feature/aspect level: iPhone is expensive.
Problem granularity

Generally, find structure in unstructured data (text)

- document level opinion mining: *The document is negative.*
- sentence level: *The sentence is negative.*
- object/entity and feature/aspect level: *iPhone is expensive.*

Classification task:

- 2-classes: positive/negative
- 3-classes: positive/negative/neutral
- 5-classes ...
A hard problem (sometimes)

- opinion mining in tweets is relatively easy (short texts, hashtags) usually 3-classes classification for each tweet
- opinion mining in reviews is harder but still the form contains aspects and the reviewer has to mark the review positive/negative usually 2-classes classification for each aspect (e.g. high price)
- opinion mining in discussions, comments, blogs is very hard

sentiment lexicon

evaluative words: nice, cool, shit, bad...
SentiWordNet [Baccianella et al., 2010]

Positive: 0 Objective: 0.125 Negative: 0.875
blue = filled with melancholy and despondency
A hard problem (sometimes)

- opinion mining in tweets is relatively easy (short texts, hashtags) usually 3-classes classification for each tweet
- opinion mining in reviews is harder but still the form contains aspects and the reviewer has to mark the review positive/negative usually 2-classes classification for each aspect (e.g. high price)
- opinion mining in discussions, comments, blogs is very hard

<table>
<thead>
<tr>
<th>evaluative word</th>
<th>aspect</th>
<th>sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>thin</td>
<td>phone</td>
<td>good</td>
</tr>
<tr>
<td>thin</td>
<td>steak</td>
<td>bad</td>
</tr>
<tr>
<td>high</td>
<td>value</td>
<td>good</td>
</tr>
<tr>
<td>high</td>
<td>price</td>
<td>bad</td>
</tr>
<tr>
<td>flat</td>
<td>story</td>
<td>bad</td>
</tr>
<tr>
<td>flat</td>
<td>phone</td>
<td>good</td>
</tr>
</tbody>
</table>
A hard problem (sometimes)

- opinion mining in tweets is relatively easy (short texts, hashtags) usually 3-classes classification for each tweet
- opinion mining in reviews is harder but still the form contains aspects and the reviewer has to mark the review positive/negative usually 2-classes classification for each aspect (e.g. high price)
- opinion mining in discussions, comments, blogs is very hard
Sentiment analysis methods: supervised machine learning

1. get example data with labels
2. extract features from the data, i.e. convert the documents to feature vectors
3. train the parameters (choose an algorithm: SVM, Naive Bayes, Neural Networks . . .)
4. test the model
Sentiment analysis methods: supervised machine learning

1. get example data with labels
2. extract features from the data, i.e. convert the documents to feature vectors
3. train the parameters (choose an algorithm: SVM, Naive Bayes, Neural Networks ...)
4. test the model
[Dinu and Iuga, 2012] report best results on Naive-Bayes with tokens as features and bigrams as features
[Liu, 2012] reports best results with SVM on balanced (English) data currently (after 2014), neural networks are the most used technique

Note: use of word embeddings is questionable, since context vectors do not distinguish polarity (e.g. *good* and *bad* occur in similar contexts and thus have similar vectors).
Sentiment analysis methods: state-of-the-art results

- on political tweets, [Maynard and Funk, 2012]: 78% precision and 47% recall
- on document level (movie reviews) [Richa Sharma and Jain, 2014]: 63% accuracy and 70% recall
- sentiment embeddings [Tang et al., 2016]: outperform word2vec by about 6 percentage points,
  F1 of Twitter Sentiment Classification on SemEval Datasets:
  pos/neg class: 86.6%
  pos/neg/neu class: 67.5%
  hybrid ranking model (neural net catching context and sentiment) + text features (word n-grams, character n-grams, ...)
- a survey on using deep learning for sentiment analysis: [Zhang et al., 2018]
References I


References II


