Web crawling, Discrimination of similar languages, Active learning & Genre classification

Vít Suchomel

Seminář zpracování přirozeného jazyka

12. října 2015
Web crawling, SpiderLing issues

- The crawler deadlocks after some time of big scale crawling – still searching for the cause.
- Non-critical performance bottlenecks optimised.
- Crawling in 2016: Italian (5.67 G words), Romanian (2.64 G words), Belarusian (in progress), Czech (in progress).
Discrimination of similar languages

- DSL competition in a COLING workshop
- Languages (task C): Arabic dialects – EGY, GLF, LAV, MSA, NOR
- Team: “Perfect is the enemy of good”: Vít S. + Vít B. + Ondra H. + Pary
- Ondra H. implemented Pary’s expectation–maximisation algorithm
- Vít B. used his Chunk based language model (1–256 byte chunks, at least 3 occurrences in training data)
Pary’s E–M approach in a nutshell (I)

- Given a sentence of words, the aim is to find the language with the highest probability “the sentence is in the language”.
- That can be reduced to maximizing probabilities of separate words belonging to the language.
- The iterative algorithm is initialised with relative counts of words in texts in the language from the training set or from big web corpora.
- Some words occur quite frequently in a single language (and significantly infrequently in other languages) while other words occur in multiple languages.
Pary’s E–M approach in a nutshell (II)

- \(P(word|language) \) is represented by a function that is calculated for each word and language (the E step).
- The relevancy (weight) of words for a language is represented by “latent variable” \(\lambda \) for each word. The variables are updated in each iteration to give more weight to words from more relevant sentences with regards to the language (the M step).

\[
P'(w|lang) = \frac{\sum_{sent} \lambda^\alpha_{lang}(sent) \cdot \frac{\lambda_{lang}(sent) \cdot P(w|lang) \cdot \text{count}_{sent}(w)}{\sum_{lang} \lambda_{lang}(sent) \cdot P(w|lang)}}{\sum_{sent} \lambda^\alpha_{lang}(sent) \cdot \lambda_{lang}(sent) \cdot |sent|}
\]
Guess the language – Task A & Results

Sentences of 5+ words ... some garbage
 • Međutim, tu ga je čekalo ne baš prijatno iznenađenje. Jedan obožavatelj je ushićeno počeo da viče. [sr]
 • 6. J.-M. Latvala (Ford Focus) a 1.06,4 [es-ES]
 • 19. Christina Staudinger (AUT) 1’44”02 [fr-FR]

<table>
<thead>
<tr>
<th>Closed Run</th>
<th>Accuracy</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM, 0 iterations</td>
<td>0.8651</td>
<td>0.8643</td>
</tr>
<tr>
<td>EM, 1 iteration</td>
<td>0.8659</td>
<td>0.865</td>
</tr>
<tr>
<td>CBLM</td>
<td>0.8827</td>
<td>0.8829</td>
</tr>
</tbody>
</table>
Guess the language – Task B & Results

Short sentences from social networks ... much garbage

- RT @ZarskeMauricio: Não se ilude não, se a pessoa ta online e não ta falando contigo é pq tem alguém mais interessante que você, falando co... [pt-BR]
- Nasao sam ljubav na Trebevicu <U+1F602> <U+1F604> #selfiemaniac #nosikiriki #sarajevo @Napretkov dom ”Trebević” https://t.co/2h3VawuD37 [bs]
- omggg https://t.co/cL8Xe9lAOM [pt-BR]

<table>
<thead>
<tr>
<th>Closed Run</th>
<th>Accuracy</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E–M, 0 iterations</td>
<td>0.8</td>
<td>0.7929</td>
</tr>
<tr>
<td>E–M, 1 iteration</td>
<td>0.712</td>
<td>0.7392</td>
</tr>
<tr>
<td>CBLM</td>
<td>0.424</td>
<td>0.4557</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Run</th>
<th>Accuracy</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E–M, 0 iterations</td>
<td>0.8</td>
<td>0.8149</td>
</tr>
<tr>
<td>E–M, 1 iteration</td>
<td>0.51</td>
<td>0.6484</td>
</tr>
</tbody>
</table>
Guess the language – Task C & Results

Sentences of 1+ words, Arabic dialects . . . hard

- bAb HrmwA AltElym wHrmwA AlvqAfp wslymh kAfp
 AlHqwwq lm yEd >mAmhm <IA >n ynthy mhnp bAstErAD
 Alqwp >w bsT AlsyTrp wAlnfw* fwAjb wtjAwbA mE slTp
 jdydp tHAwl >n tjd >dwAt Alty tsyTr bhA fhy IA tstTyE >n
tsyTr bAlsyAsp wlA bAlvqAfp wlA b>y mnTq w<nmA tsyTr
 bAlbTI [MSA]

<table>
<thead>
<tr>
<th>Closed Run</th>
<th>Accuracy</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>E–M, 0 iterations</td>
<td>0.3961</td>
<td>0.3666</td>
</tr>
<tr>
<td>E–M, 1 iteration</td>
<td>0.461</td>
<td>0.4516</td>
</tr>
<tr>
<td>CBLM</td>
<td>0.4474</td>
<td>0.4473</td>
</tr>
</tbody>
</table>
Error analysis – EM-0 vs. CBLM

EM-0 right, CBLM wrong
- 9. (9) Juan Martin Del Potro (Arg) 3180 [es-AR, CBLM: hr]
- * Sainte-Catherine 3.65$ * Mont-Tremblant 4.13$ * Blainville 25.52$ * Drummondville 106.63$ * Farnham 183.02$ [fr-CA, CBLM: id]
- 2) O PAÍS - p. 4 - Para acalmar aliados, Dilma afaga ministros [pt-BR, CBLM: es-MX]

EM-0 wrong, CBLM right
- Protagonizada por: Brad Pitt, Jonah Hill, Philip Seymour Hoffman, Chris (I) Pratt. [es-MX, EM-0: bs]
- 23. Charles Pic (França), Marussia-Cosworth, 1m42.675s [pt-PT, EM-0: fr-FR]
- Martes a Sábados 8 a 20/Domingos 9 a 13 [es-AR, EM-0: pt-PT]
- Bugalhos . 1009 0 0 [pt-PT, EM-0: my]
Competition vs. real world deployment

Competition
- Training data = sentences, short sentences, socnet messages ⇒ some instances hardly usable
- Balanced classes ⇒ good for machine learning
- Balanced classes ⇒ move unsure samples from larger class to a smaller one (?)
- Letting CBLM decide where EM is unsure would improve the result (?)

Web text processing for corpus linguistics
- Documents, paragraphs, sentences
- Discriminating languages in unbalanced texts (filtering out Danish and Swedish from Norwegian)
- Separating a minority dialect represented by less text from a standard text in a language (Norwegian written standards: Bokmål (85–90 %) and Nynorsk)
- Joining both methods might be impractical
Active learning

- High cost of annotation, many annotations needed, samples easy to obtain
- Active learning: Select the most useful unlabelled instances for manual annotation, re-train, iterate
- Uncertainty sampling: the most useful samples = the most uncertain = those closest to the threshold (binary classification with a threshold).

Sample selection process
Stay in Leeds with prof. Sharoff

- Use supervised learning to optimise a threshold for binary classification of a multidimensional problem
- Use active learning and measure uncertainty
- Apply genre classification works to large web corpora
- Get to know more about the content of web corpora in Sketch Engine