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Introduction

1. Introduction

Word embeddings are popular, but conflate word meanings, a.k.a. polysemy.
Multi-sense embeddings (M-SE) tackle polysemy by modeling word senses, not words.
Existing approaches to M-SE include:

Multi-prototype [2, 3] Unsupervised, based on clustering, and
Sense-inventory-based [4, 5] Semi-supervised, based on knowledge bases, our approach.

Problems

Sense-annotated corpora are small, a.k.a. the knowledge acquisition bottleneck.
Existing approaches focus on word similarity task, not word sense disambiguation.

Our Contributions

We propose augmenting sense-annotated corpora using semantic relations.
We propose new semantic similarity measures for word sense disambiguation.
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Related work

2. Related work
Existing approaches to M-SE include:
Multi-prototype [6, 2, 3, 7, 8], and
Sense-inventory-based [9, 4, 10, 11, 12, 13, 14, 5, 15, 16].
Existing NLP tasks for M-SE include:
Word similarity [17, 2, 3, 9, 4, 10, 11, 13, 7, 14, 5, 15],
Word sense disambiguation [9, 11, 13, 16],
Relational similarity [4],
Analogical reasoning [10, 7],
Sense clustering [13, 14],
Domain labeling [13],
Synonym recognition [15], and
Outlier detection [15].

E. Ayetiran, P. Sojka, V. Novotný · EDS-MEMBED · March 16, 2021 3 / 25



Preprocessing

3. & 4. Preprocessing I

For training our M-SE, we use the following sense-annotated corpora:

Semcor [18] 362 English texts comprising over 200,000 words, and
WordNet Gloss Tags (WNGT) [19] Semi-automatic sense annotations of all WordNet glosses.

First, we remove stopwords and we disambiguate unannotated words by maximum
overlap of target and context sense glosses from WordNet using a Lesk algorithm [20]:
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Preprocessing

3. & 4. Preprocessing II

Second, we train M-SE using word2vec [21] and we use our word sense disambiguation
algorithm (to be described later) to improve the disambiguation from first step. (MEMBED)
Third, we augment WNGT using semantic relations from WordNet: (EDS-MEMBED)

See [1, Section 4.2] for hyperparameters and [1, tables 7 and 8] for their ablation study.

E. Ayetiran, P. Sojka, V. Novotný · EDS-MEMBED · March 16, 2021 5 / 25



Preprocessing

3. & 4. Preprocessing III
4.1 Augmentation Example

In WNGT, the sense permit.v.01 is defined by the gloss consent to, give permission.
We remove the stopword to and disambiguate the gloss to accept.v.03 give.v.09 permission.n.01.
Using WordNet, we expand permit.v.01 to its hypernym accept.v.03.
Using WordNet, we expand permit.v.01 to its hyponyms:
1. admit.v.02
2. admit.v.03

3. allow.v.10
4. authorize.v.01

5. digest.v.03
6. furlough.v.02

7. give.v.40
8. legalize.v.01

9. privilege.v.01
10. trust.v.02

We produce the following augmented sequence:
permit.v.01 accept.v.03 admit.v.02 admit.v.03 allow.v.10 authorize.v.01 digest.v.03 furlough.v.02
give.v.40 legalize.v.01 privilege.v.01 trust.v.02 accept.v.03 give.v.09 permission.n.01
Before training M-SE, we convert the senses to 〈WordNet offset, part of speech〉:
00802318v 00797697v 02502536v 02449847v 00802946v 00803325v 00668099v 00748803v
00748972v 02481436v 02453692v 02481819v 00797697v 01629403v 06689297n
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Experiments

5. Experiments I

We use the following word–word similarity measures:
AvgSim(w,w′) [6] np.mean(W ·W ′T), where W ,W ′ are `2-normalized M-SE matrices for

words w,w′ and · is dot product, which gives us all pairwise cosine similarities,
MaxSim(w,w′) [6] np.max(W ·W ′T), where W ,W ′ as above,
AvgSimC(w,w′, c) [6] np.mean((W ·W ′T)�S), where S = (W · C̄)⊗ (W ′ · C̄), C is an M-SE

matrix for context words c, C̄ = np.mean(C, axis=0) is mean context
M-SE, � is Hadamard product, ⊗ is outer product, and W ,W ′ as above,

MaxSimC(w,w′, c) [6] np.max((W ·W ′T)�S), S = (W · C̄)⊗ (W ′ · C̄), whereW ,W ′, C as above,
globalSim(w,w′) [3, 5] W̄ · W̄ ′, where W ,W ′ as above.

We propose the following sense–word similarity measures for word sense disambiguation:
AvgSimS(s,w′) np.mean(~s ·W ′T), where~s is an M-SE for sense s and W ′ as above,
SumAvgSimS(s,w′)

∑
w′∈w′ AvgSimS(s,w′), where w′ is a set of context words,

MaxSimS(s,w′) np.max(~s ·W ′T), where~s,W ′ as above,
SumMaxSimS(s,w′)

∑
w′∈w′ MaxSimS(s,w′), where w′ as above.
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Experiments Word Sense Disambiguation

5. Experiments II
5.3 Word Sense Disambiguation I

We disambiguate wordw in contextw′ as arg maxs∈w f(s,w′), f ∈{SumAvgSimS, SumMaxSimS}.
For words with no context or negative arg max, we assign the first WordNet sense.
We evaluate on six datasets, see [1, Section 5.3] for details:
1. Senseval-2 (SE2) [22]
2. Senseval-3 English all-words task (SE3) [23]
3. SemEval-2007 task 17 (SE07-17) [24]

4. SemEval-2007 task 07 (SE07-07) [25]
5. SemEval-2013 task 12 (SE13-12) [24]
6. SemEval-2015 task 13 (SE15-13) [25]

In our comparison, we distinguish M-SE-based and non-M-SE-based systems.
In our comparison, we also distinguish four kinds of approaches:

Unsupervised Based on large unannotated corpora, worst performance,
Knowledge-based Based on sense inventories and lexical resources, our approach,
Semi-supervised Based on small sense-annotated corpora and large unannotated corpora,
Supervised Based on small sense-annotated corpora, best performance.
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Experiments Word Sense Disambiguation

5. Experiments III
5.3 Word Sense Disambiguation II
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Experiments Word Sense Disambiguation

5. Experiments IV
5.3 Word Sense Disambiguation III
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Experiments Word Similarity

5. Experiments V
5.4 Word Similarity I

For words w,w′, we compute similarity as f (w,w′), f ∈ {AvgSim, MaxSim, globalSim}.
For words w,w′ in context c, we use f (w,w′, c), f ∈ {AvgSimC, MaxSimC, globalSim}.
We evaluate on five datasets, see [1, Section 5.4] for details:
1. RG65,MC28,MEN [26, 27, 28] 2. SimLex999 [29] 3. WordSim-353 [30]
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Experiments Word Similarity

5. Experiments VI
5.4 Word Similarity II
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Experiments Computational Complexity

5. Experiments VII
5.6 Computational Complexity

E. Ayetiran, P. Sojka, V. Novotný · EDS-MEMBED · March 16, 2021 13 / 25



Conclusion

Conclusion
Word embeddings suffer from polysemy.
Multi-sense embeddings (M-SE) solve polysemy, but suffer from lack of training data.
We propose an approach that covers all word senses using WordNet.
We also adapt existing word similarity measures to word sense disambiguation.
Our approach is efficient and competitive on word similarity and word sense disambiguation.
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