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̶ 13th Conference and Labs of the Evaluation Forum [GGS rank B]
̶ Venue: Università di Bologna
̶ Topic: Information access in any modality and language
̶ Form: Workshops presenting results of lab-based benchmarks

About CLEF 2022



̶ Vítek Novotný co-organized the ARQMath-3 lab about MathIR
̶ Martin Geletka and Marek Toma presented the best automatic 

run at ARQMath-3 Task 1 (Answer Retrieval) among 7 teams.

FI MU at CLEF 2022
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Task 1: Find Answers to Math Questions

6

Assessed as Medium Relevance

Assessed as Non-RelevantTopic A.348

Given one of Math Stack Exchange question as a query,
search answer posts from prior years, return up to 1,000 answers



Task 2: Contextualized Formula Retrieval
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Given a formula from a Task 1 question, 
search questions & answers from prior years, return relevant formulae

Topic B.348

Assessed as Medium Relevance

Assessed as Non-Relevant



Task 3: Open-Domain Question Answering
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Given a Math Stack Exchange question as a query (as Task 1), 
return a single (extracted/generated) answer to math questions

Topic A.309

Assessed as Highly Relevant

Assessed as Non-Relevant



Task 3: Runs
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Runs
● 1 baseline run:

○ GPT-3 (automatic, generative)

● 13 participant runs from 3 teams:
○ 5 runs from Approach0 (manual, extractive)
○ 4 runs from DPRL (automatic, extractive)
○ 4 runs from TU_DBS (automatic, generative)

Brown et al., Language Models are Few-Shot Learners. NeurIPS, 2020



Task 3 Baseline Run: GPT-3
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We use text-davinci-002 model of GPT-3 from OpenAI

First, we prompt GPT-3 as follows:
Q: What does it mean for a matrix to be Hermitian?

A: 

Brown et al., Language Models are Few-Shot Learners. NeurIPS, 2020



Task 3 Baseline Run: GPT-3
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We use text-davinci-002 model of GPT-3 from OpenAI

GPT-3 completes the text and produces an answer:
Q: What does it mean for a matrix to be Hermitian?

A: A matrix is Hermitian if it is equal to its 
transpose conjugate.

Brown et al., Language Models are Few-Shot Learners. NeurIPS, 2020



Task 3: Evaluation
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Manual Evaluation Measures
● Average Relevance (AR)
● Precision at 1 (P@1)

Automatic Evaluation Measures
● Lexical Overlap (LO)

● Contextual Similarity (CS)



Task 3 Evaluation: Manual Measures
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Average Relevance (AR)

AR = (0 + 2 + 1) / 3 = 1.00

Precision at 1 (P@1)

P@1 = (0 + 1 + 0) / 3 = 0.33

A.301
Not Relevant (0)

A.302
Medium Relevance (2)

A.303
Low Relevance (1)

A.301
Not Relevant (0)

A.302
Medium Relevance (2)

A.303
Low Relevance (1)



Task 3 Evaluation: Automatic Measures
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Lexical Overlap (LO) and Contextual Similarity (CS)
                             similarity          where     are the system’s answers 
to a question and     are known relevant answers for the same question

Question:
What does it mean for a matrix to be Hermitian?

System’s Answer   :
A matrix that is equal to its transpose conjugate

Known Relevant Answer   :
A complex square matrix that is equal to its own
conjugate transpose

average

max

known relevant
     answers

system’s
 answers



Task 3 Evaluation: Automatic Measures

Lexical Overlap (LO)

                                 -score          where     are the system’s answers 
to a question and     are known relevant answers for the same question

Contextual Similarity (CS)

                 BERTScore        

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, Y. Artzi, BERTScore: Evaluating Text Generation with 
BERT. ICLR 2020

V. Novotný and M. Štefánik. Combining Sparse and Dense Information Retrieval. Soft Vector Space 
Model and MathBERTa at ARQMath-3 Task 1 (Answer Retrieval). CLEF 2022
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average

max

known relevant
     answers

system’s
 answers



Task 3 Results: Best Run per Team

Run Type ARQMath-3 (78 Topics) (73 Topics)

Team Run Data Primary Manual Generative AR P@1 LO CS MG UI

Baseline GPT-3 Both ✓ ( 1.346 ) ( 0.500 ) 0.317 0.851 0.288 (0.466)

Approach0 run1 Both ✓ 1.282 0.436 0.509 0.886 0.110 0.562

DPRL SBERT-SVMRank Both 0.462 0.154 0.330 0.846 0.205 0.767

TU_DBS amps3_se1_hints Both 0.325 0.078 0.263 0.835 0.833 0.931

Manual Evaluation

● GPT-3 outperformed all runs; Approach0 run is a close second
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Automatic Evaluation

● Lexical Overlap (LO) correlates with manual measures (𝜏 = 0.736)
● LO can be used to evaluate future systems for Open Domain QA

AR P@1 LO CS

AR 1.000 0.994 0.736 0.670

P@1 1.000  0.729 0.674

LO 1.000 0.805

CS 1.000

Kendall’s 𝜏

17



Task 3 Post-Evaluation: Characterizing Answers
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In addition to quantitative evaluation, we were interested in the following:

● Can assessors distinguish human and machine-generated answers?
● Do Task 3 systems stuff answers with unrelated information?
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● Whether they thought the answers were machine-generated
● Whether answers contained information unrelated to the topic question



Task 3 Post-Evaluation: Characterizing Answers
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In addition to quantitative evaluation, we were interested in the following:

● Can assessors distinguish human and machine-generated answers?
● Do Task 3 systems stuff answers with unrelated information?

We provided a sample of Task 1 and Task 3 answers to assessors, and asked:

● Whether they thought the answers were machine-generated
● Whether answers contained information unrelated to the topic question

We report the following post-evaluation measures:

● Machine-Generated (MG) – Fraction of answers assessed as machine-generated
● Unrelated Information (UI) – Fraction of answers with unrelated information



Task 3 Results: Best Run per Team
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Run Type ARQMath-3 (78 Topics) (73 Topics)

Team Run Data Primary Manual Generative AR P@1 LO CS MG UI

Baseline GPT-3 Both ✓ ( 1.346 ) ( 0.500 ) 0.317 0.851 0.288 (0.466)

Approach0 run1 Both ✓ 1.282 0.436 0.509 0.886 0.110 0.562

DPRL SBERT-SVMRank Both 0.462 0.154 0.330 0.846 0.205 0.767
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Characterizing Answers

● Assessors reliably identified machine-generated 
answers with the exception of GPT-3 (MG = 0.288).

● Anti-correlation between effectiveness and unrelated 
information (𝜏 = –0.88) indicates no answer stuffing.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Separation of extractive (      ) / generative (      ) runs using MG

GPT-3

1.0



22



23

MIR systems on ArqMath 2022
● Runs from PV211 students (MSM team)

○ TF-IDF, BM25, CompuBERT

● Runs submitted by MIR teams
○ Variations of deep Retrieval / ReRanker models

● Ensembles of of individual systems
○ IBC, RRF, RBC, WIBC
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Retrieval - ReRanker models
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Best system - RRF ensemble
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Rossum.ai at CLEF 2022
● Need for practical Benchmark

○ Business Document Information Extraction: Towards Practical Benchmarks

● Article describes:
○ Need for practical benchmark for DocILE
○ Main problems researched by Rossum.ai 

■ Key Information Extraction and Localization  
■ Table Extraction and Line Items
■ One-Shot Learning for Information Extraction

○ Other related problems:
■ Optical Character Recognition
■ Document Layout Analysis
■ Extraction of Key-Value Pairs
■ Question Answering

https://arxiv.org/pdf/2206.11229.pdf
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DocILE at CLEF 2023
̶ Document Information Localization and Extraction
̶ Lab proposal by ROSSUM, to be held bi-yearly at CLEF
̶ Goal: Industry-strength benchmarks for invoice-like documents
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Other visited labs on CLEF
● Image CLEF

○ One of the biggest labs on CLEF conference
○ ImageCLEFaware, ImageCLEFcoral, ImageCLEFmedical, ImageCLEFfusion
○ SnakeCLEF - organized by University of West Bohemia

● CheMu
○ Task 1 Expression level extraction

■ Named Entity Recognition
■ Event Extraction
■ Anaphora Resolution

○ Task 2 Document level information extraction
■ Chemical Reaction Reference Resolution
■ Table Semantic Classification
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Other visited labs on CLEF
● eRisk 

○ Early risk prediction on Internet
○ Early Detection of Signs of Pathological Gambling
○ Early Detection of Depression
○ Measuring the severity of the signs of Eating Disorders

● Check That
○ Fighting the Covid-19 Disinformation and Fake news Detection
○ Identification of Relevant Claims on Twitter
○ Detecting Previously Fact-Checked Claims
○ Fake News Detection
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MathIRQA at ECIR 2023
̶ Math-aware Information Retrieval and Question Answering
̶ Workshop proposal by FI MU and NIT Silchar (India)
̶ Topics and Themes:

̶ Index optimization

̶ Scientific document retrieval

̶ Scientific information extraction

̶ Discovery of scientific knowledge

̶ Searching & ranking of math information

̶ Formula embedding

̶ Math information retrieval

̶ Representation of math information

̶ Formula Search

̶ Math-aware question answering

̶ Math problem solving

̶ Semantic interpretation of math information


