MUNI FI

CLEF 2022

Vít Novotný, Martin Geletka, Marek Toma, Petr Sojka

About CLEF 2022

- 13th Conference and Labs of the Evaluation Forum [GGS rank B]
- Venue: Università di Bologna
- Topic: Information access in any modality and language
- Form: Workshops presenting results of lab-based benchmarks

FI MU at CLEF 2022

- Vítek Novotný co-organized the ARQMath-3 lab about MathIR
- Martin Geletka and Marek Toma presented the best automatic run at ARQMath-3 Task 1 (Answer Retrieval) among 7 teams.

ABQMath-3

Answer Retrieval for Questions on Math

https://www.cs.rit.edu/~dprl/ARQMath

#ARQMath

Behrooz Mansouri

Rochester Institute of Technology USA

bm3302@rit.edu

Vítek Novotný

Faculty of Informatics,
Masaryk University, Czechia

witiko@mail.muni.cz

Anurag Agarwal

Rochester Institute of Technology USA

axasma@rit.edu

Douglas W. Oard

University of Maryland USA

oard@umd.edu

Richard Zanibbi

Rochester Institute of Technology USA

rxzvcs@rit.edu

Task 1: Find Answers to Math Questions

Given one of Math Stack Exchange question as a query, search answer posts from prior years, return up to 1,000 answers

Question about determinant of a block matrix

I was studying block matrices and suddenly this question came to my mind.

Let $A, B \in \mathbb{R}^{n \times n}$. From this Wikipedia page,

$$\det \left(egin{array}{cc} A & B \ B & A \end{array}
ight) = \det(A-B)\det(A+B)$$

even if A and B do not commute. Does a similar condition hold for the following block matrix?

$$\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$$

matrices

determinant

block-matrices

Look at the arithmetic operations and their actions. With + and *, these matrices form a field. And we have the isomorphism

$$a+ib\mapsto \left[egin{matrix} a & -b \ b & a \end{matrix}
ight].$$

Assessed as Medium Relevance

As Lord Farin points out, this is certainly false. Consider for example any prime p and the matrix

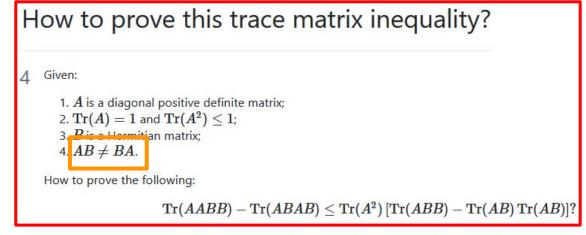
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

which satisfies $A^x = 0$ for all x > 1.

Task 2: Contextualized Formula Retrieval

Given a **formula** from a Task 1 question, **search questions & answers** from prior years, return relevant formulae

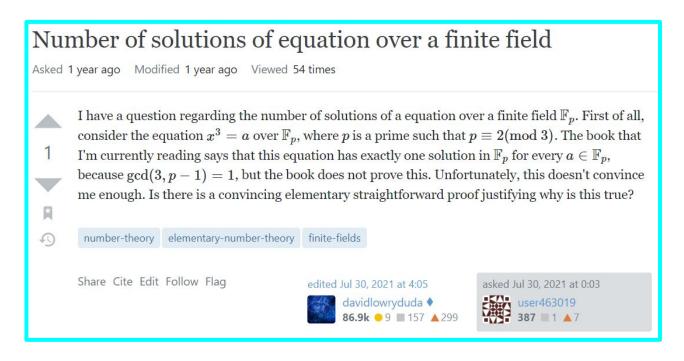
Question about determinant of a block matrix O I was studying block matrices and suddenly this question came to my mind. Let $A, B \in \mathbb{R}^{n \times n}$. From this Wikipedia page, $\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det(A - B) \det(A + B)$ even if A and B do not commute. Does a similar condition hold for the following block matrix? $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$ matrices determinant block-matrices


Topic B.348

There are regular graphs that are not distance-regular but do have perfect 1-codes. If A and B are the adjacency matrices of a graph X and its complement, the matrix

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix}$$

is the adjacency matrix of a graph with a perfect 1-code of size two (in most cases). (There are many other examples, but these are the first that come to mind.)


Assessed as Medium Relevance

Task 3: Open-Domain Question Answering

Given a Math Stack Exchange question as a query (as Task 1), return a single (extracted/generated) answer to math questions

If $a \neq 0$, then $x^3 - a = (x - r)(x^2 + rs + s^2)$. Because $\gcd(3, p - 1) = 1$, there are units r and s such that r + s = -1. This implies that $x^3 - a$ factors into linear terms, so it is not separable, so it has a repeated root r and therefore has at most one solution. Now, suppose a = 0. Then $x^3 = 0$ has at most one solution because $\gcd(3, p) = 1$.

Assessed as Highly Relevant

Hint: consider $\sum_{t=0}^{p-1} \sum_{x_i} \sum_{x_2} \cdots \sum_{x_n} e^{2\pi i t (x_1^2 + x_2^2 + \cdots + x_n^2)/p}$ The sums on the x_i all run from 0 to p-1.

Task 3: Runs

Runs

- 1 baseline run:
 - GPT-3 (automatic, generative)
- 13 participant runs from 3 teams:
 - 5 runs from Approach0 (manual, extractive)
 - 4 runs from **DPRL** (automatic, extractive)
 - 4 runs from TU_DBS (automatic, generative)

Task 3 Baseline Run: GPT-3

We use text-davinci-002 model of GPT-3 from OpenAl

First, we prompt GPT-3 as follows:

Q: What does it mean for a matrix to be Hermitian?

A:

Task 3 Baseline Run: GPT-3

We use text-davinci-002 model of GPT-3 from OpenAl

GPT-3 completes the text and produces an answer:

Q: What does it mean for a matrix to be Hermitian?

A: A matrix is Hermitian if it is equal to its transpose conjugate.

Task 3: Evaluation

Manual Evaluation Measures

- Average Relevance (AR)
- Precision at 1 (P@1)

Automatic Evaluation Measures

- Lexical Overlap (LO)
- Contextual Similarity (CS)

Task 3 Evaluation: Manual Measures

Average Relevance (AR)

A.301	A.302	A.303	
Not Relevant (0)	Medium Relevance (2)	Low Relevance (1)	

$$AR = (0 + 2 + 1) / 3 = 1.00$$

Precision at 1 (P@1)

A.301	A.302	A.303
Not Relevant (0)	Medium Relevance (2)	Low Relevance (1)

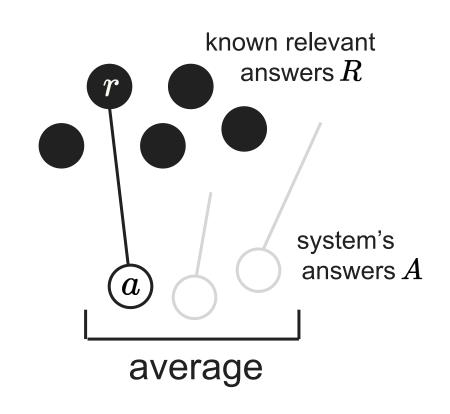
$$P@1 = (0 + 1 + 0) / 3 = 0.33$$

Task 3 Evaluation: Automatic Measures

Lexical Overlap (LO) and Contextual Similarity (CS)

 $rac{1}{|A|}\cdot\sum_{a\in A}\max_{r\in R}\mathrm{similarity}\,(a,r),$ where A are the system's answers to a question and R are known relevant answers for the same question

Question:


What does it mean for a matrix to be Hermitian?

System's Answer a:

A matrix that is equal to its transpose conjugate

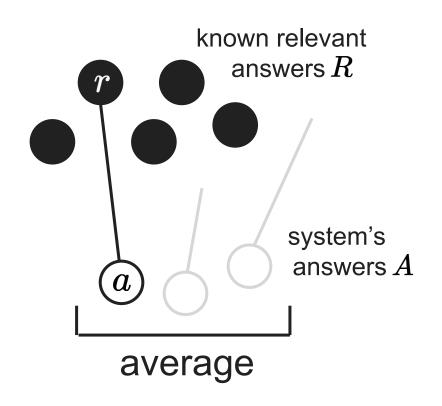
Known Relevant Answer r:

A complex square matrix that is equal to its own conjugate transpose

Task 3 Evaluation: Automatic Measures

Lexical Overlap (LO)

 $rac{1}{|A|}\cdot\sum_{a\in A}\max_{r\in R}F_1$ -score (a,r), where A are the system's answers to a question and R are known relevant answers for the same question


Contextual Similarity (CS)

$$rac{1}{|A|} \cdot \sum_{a \in A} \mathsf{BERTScore}\left(a,R
ight)$$

(a,r)

T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, Y. Artzi, BERTScore: Evaluating Text Generation with BERT. ICLR 2020

V. Novotný and M. Štefánik. Combining Sparse and Dense Information Retrieval. Soft Vector Space Model and MathBERTa at ARQMath-3 Task 1 (Answer Retrieval). CLEF 2022

Task 3 Results: Best Run per Team

			Run Type			AR	ARQMath-3 (78 Topics)				(73 Topics)		
Team	Run	Data	Primary	Manual	Generative	AR	P@1	LO	CS	MG	UI		
Baseline	GPT-3	Both	1		<u>र्राक</u> ्री	(1.346)	(0.500)	0.317	0.851	0.288	(0.466)		
Approach0	run1	Both		✓	2	1.282	0.436	0.509	0.886	0.110	0.562		
DPRL	SBERT-SVMRank	Both			2	0.462	0.154	0.330	0.846	0.205	0.767		
TU_DBS	amps3_se1_hints	Both			<u>४ के ४</u>	0.325	0.078	0.263	0.835	0.833	0.931		

Manual Evaluation

• **GPT-3** outperformed all runs; **Approach0** run is a close second

Task 3 Results: Best Run per Team

			Run Type			AR	ARQMath-3 (78 Topics)				(73 Topics)		
Team	Run	Data	Primary	Manual	Generative	AR	P@1	LO	CS	MG	UI		
Baseline	GPT-3	Both	1		<u>४७</u> ,४	(1.346)	(0.500)	0.317	0.851	0.288	(0.466)		
Approach0	run1	Both		✓	2	1.282	0.436	0.509	0.886	0.110	0.562		
DPRL	SBERT-SVMRank	Both			9	0.462	0.154	0.330	0.846	0.205	0.767		
TU_DBS	amps3_se1_hints	Both			<u>र्राकृ</u> ष्ठ	0.325	0.078	0.263	0.835	0.833	0.931		

Manual Evaluation

• **GPT-3** outperformed all runs; **Approach0** run is a close second

Automatic Evaluation

- Lexical Overlap (LO) correlates with manual measures (τ = 0.736)
- LO can be used to evaluate future systems for Open Domain QA

	AR	P@1	LO	cs
AR	1.000	0.994	0.736	0.670
P@1		1.000	0.729	0.674
LO	_ 		1.000	0.805
cs				1.000

Task 3 Post-Evaluation: Characterizing Answers

In addition to quantitative evaluation, we were interested in the following:

- Can assessors distinguish human and machine-generated answers?
- Do Task 3 systems stuff answers with unrelated information?

Task 3 Post-Evaluation: Characterizing Answers

In addition to quantitative evaluation, we were interested in the following:

- Can assessors distinguish human and machine-generated answers?
- Do Task 3 systems stuff answers with unrelated information?

We provided a sample of Task 1 and Task 3 answers to assessors, and asked:

- Whether they thought the answers were machine-generated
- Whether answers contained information unrelated to the topic question

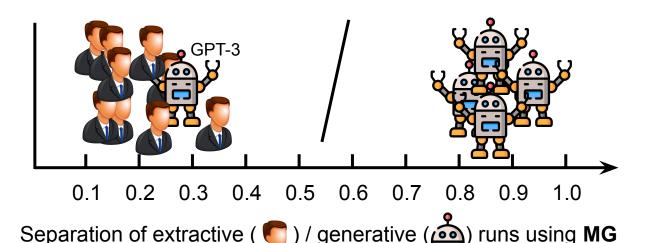
Task 3 Post-Evaluation: Characterizing Answers

In addition to quantitative evaluation, we were interested in the following:

- Can assessors distinguish human and machine-generated answers?
- Do Task 3 systems stuff answers with unrelated information?

We provided a sample of Task 1 and Task 3 answers to assessors, and asked:

- Whether they thought the answers were machine-generated
- Whether answers contained information unrelated to the topic question


We report the following post-evaluation measures:

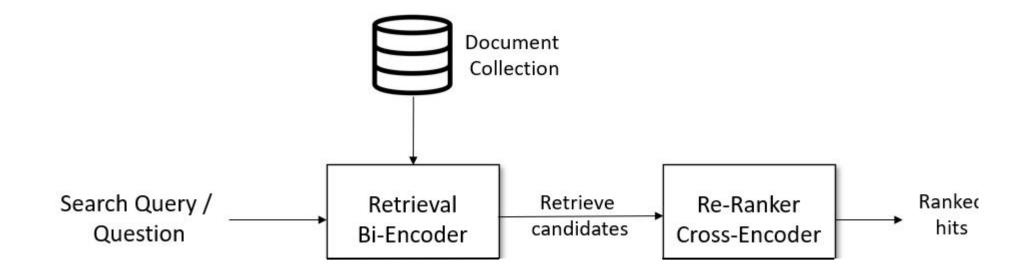
- Machine-Generated (MG) Fraction of answers assessed as machine-generated
- Unrelated Information (UI) Fraction of answers with unrelated information

Task 3 Results: Best Run per Team

			Run Type			AR	ARQMath-3 (78 Topics)				(73 Topics)		
Team	Run	Data	Primary	Manual	Generative	AR	P@1	LO	CS	MG	UI		
Baseline	GPT-3	Both	✓		<u>४</u>	(1.346)	(0.500)	0.317	0.851	0.288	(0.466)		
Approach0	run1	Both		✓	2	1.282	0.436	0.509	0.886	0.110	0.562		
DPRL	SBERT-SVMRank	Both			2	0.462	0.154	0.330	0.846	0.205	0.767		
TU_DBS	amps3_se1_hints	Both			धुक्केष्ठ	0.325	0.078	0.263	0.835	0.833	0.931		

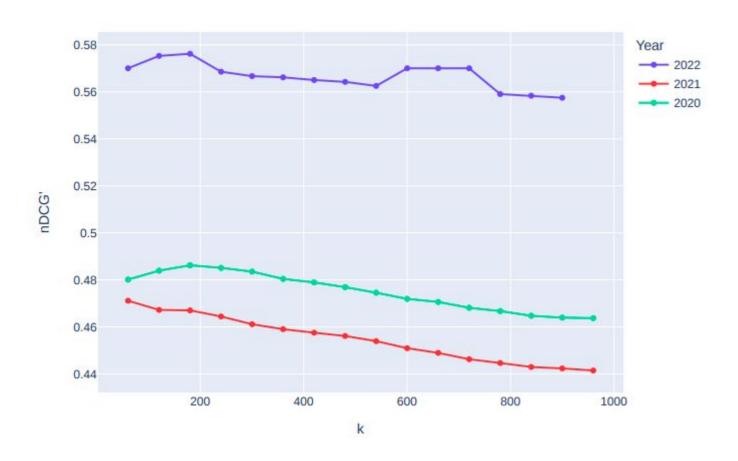
Characterizing Answers

- Assessors reliably identified machine-generated answers with the exception of GPT-3 (MG = 0.288).
- Anti-correlation between effectiveness and unrelated information ($\tau = -0.88$) indicates no answer stuffing.



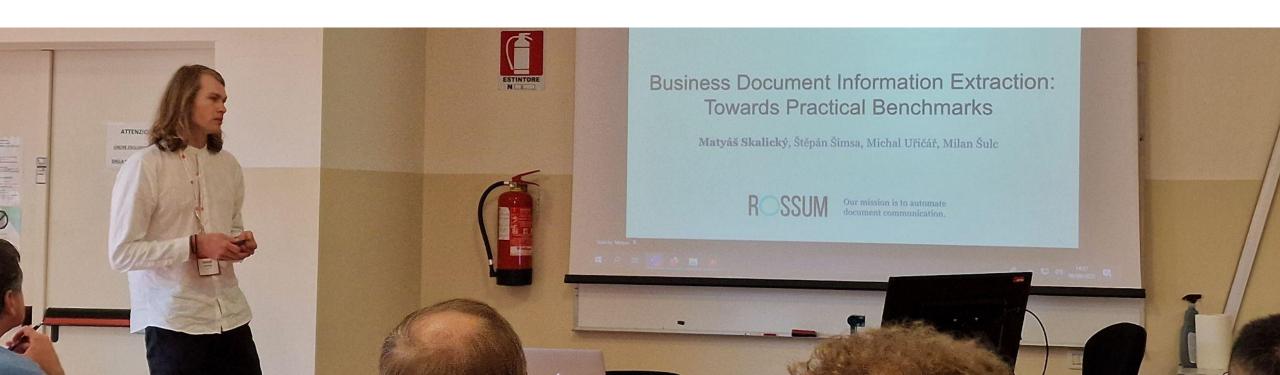
MIR systems on ArqMath 2022

- Runs from PV211 students (MSM team)
 - TF-IDF, BM25, CompuBERT
- Runs submitted by MIR teams
 - Variations of deep Retrieval / ReRanker models
- Ensembles of of individual systems
 - o IBC, RRF, RBC, WIBC



Retrieval - ReRanker models

Best system - RRF ensemble


Rossum.ai at CLEF 2022

- Need for practical Benchmark
 - Business Document Information Extraction: Towards Practical Benchmarks
- Article describes:
 - Need for practical benchmark for DocILE
 - Main problems researched by Rossum.ai
 - Key Information Extraction and Localization
 - Table Extraction and Line Items
 - One-Shot Learning for Information Extraction
 - Other related problems:
 - Optical Character Recognition
 - Document Layout Analysis
 - Extraction of Key-Value Pairs
 - Question Answering

DocILE at CLEF 2023

- Document Information Localization and Extraction
- Lab proposal by ROSSUM, to be held bi-yearly at CLEF
- Goal: Industry-strength benchmarks for invoice-like documents

Other visited labs on CLEF

Image CLEF

- One of the biggest labs on CLEF conference
- ImageCLEFaware, ImageCLEFcoral, ImageCLEFmedical, ImageCLEFfusion
- SnakeCLEF organized by University of West Bohemia

CheMu

- Task 1 Expression level extraction
 - Named Entity Recognition
 - Event Extraction
 - Anaphora Resolution
- Task 2 Document level information extraction
 - Chemical Reaction Reference Resolution
 - Table Semantic Classification

Other visited labs on CLEF

eRisk

- Early risk prediction on Internet
- Early Detection of Signs of Pathological Gambling
- Early Detection of Depression
- Measuring the severity of the signs of Eating Disorders

Check That

- Fighting the Covid-19 Disinformation and Fake news Detection
- Identification of Relevant Claims on Twitter
- Detecting Previously Fact-Checked Claims
- Fake News Detection

MathIRQA at ECIR 2023

- Math-aware Information Retrieval and Question Answering
- Workshop proposal by FI MU and NIT Silchar (India)
- Topics and Themes:
 - Math information retrieval
 - Representation of math information
 - Formula Search
 - Math-aware question answering
 - Math problem solving
 - Semantic interpretation of math information

- Index optimization
- Scientific document retrieval
- Scientific information extraction
- Discovery of scientific knowledge
- Searching & ranking of math information
- Formula embedding

