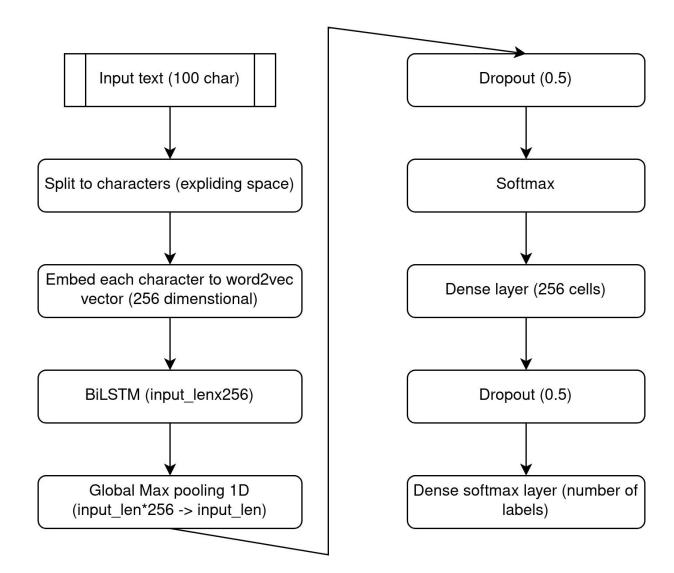


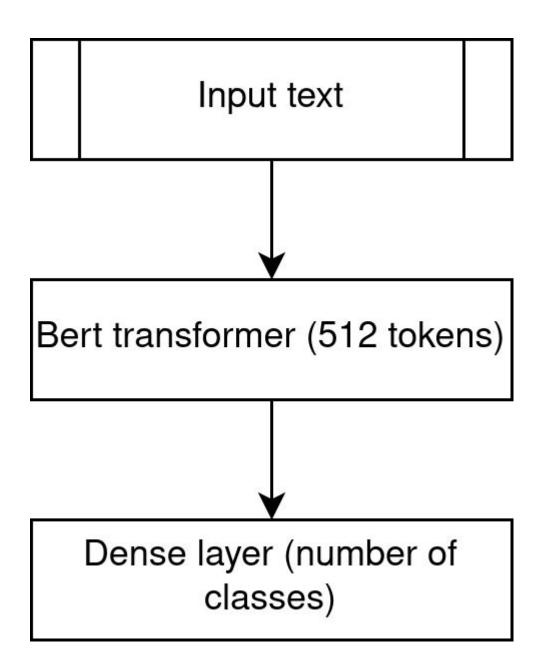
Authorship identification - comparison of selected algorithms

Adam Karásek

Ensemble model


- Authorship identification using ensemble learning
- Ahmed Abbasi et al. [1]
- 97% on 10 authors

Email detective


- Email Detective: An Email
 Authorship Identification
 And Verification Model
- Yong Fang et al. [2]
- 98.9% on 10 authors
- 92.9% on 25 authors

BertAA

- BertAA: BERT fine-tuning for Authorship Attribution
- Maël Fabien et al. [3]
- 99.1 % on 10 authors
- 98.7% on 25 authors

Datasets

- 5, 10 and 25 authors
- Enron, Techcrunch and crypto telegram

```
Where does the project name come from? What does it mean for you and why did you choose that name for your project??

Sign up & Trade: https://www.okex.com/academy/en/start.trading.cryptocurrency-on-okex?channelFlag=ACEAP4502833
QKEX_101 New User Tutorial database: https://telegra.ph/QKEX-101-New-User-Tutorial-10-12

Hi you could refer to the video to better the understanding of QKEX_unified account operation https://twitter.com/i/status/1336627448155230209

Win Tesla Model Y iPhone 12 and 40,000 USDT iPhon
```


Datasets

Table 1. Number of documents per author in experiment set

Dataset	k =	5	k =	10	<u>k</u> =	25
Enron	l = 4	4000	l =	2000	l =	800
Telegram	l = 1	1000	l =	650	l =	470
Techcrunch	l=1	2500	l =	1200	l =	250

Results - Ensemble

- Ensemble model

	Training time 0.9728 0.943 0.7504 894s 1229s 1142s
Telegram $k = 5 k = 10 k =$	25 Enron $k = 5 \ k = 10 \ k = 25$
Ensemble 0.34 0.2062 0.0 Random Forest 0.344 0.2062 0.0 XGB classifier 0.308 0.1985 0.0 MLP 0.31 0.2338 0.0	Random Forest 0.9625 0.9228 0.8171 885 XGB classifier 0.9395 0.8961 0.8142
MLP 0.31 0.2338 0.0 Training time 52s 78s 1	

Techcrunch

Ensemble

MID

 $k = 5 \ k = 10 \ k = 25$

 $0.9624 \ 0.9275 \ 0.7568$

 $0.042 \ 0.7504$

Random Forest 0.904 0.8517 0.6096

XGB classifier 0.9616 0.915 0.7536

0.0728

Results - Ensemble model

- Number of features:
 - Telegram 4500-6000
 - Enron 26000
 - Techcrunch 44000-55000
- Ensemble is more robust on more authors
- Random forest is better with less features
- MLP can be better than ensemble with lower number of authors and bigger number of features

Results - Email Detective

- Email detective - input set to 100 yields better results than larger

input

Table 4.4: Email	detective ex	periment	results
------------------	--------------	----------	---------

Email detective	k = 5	k = 10	k = 25
Enron acc	0.9413	0.8719	0.7407
Enron time	678s	704s	827s
Techcrunch acc	0.7131	0.5695	0.2123
Techcrunch time	382s	492s	252s
Telegram acc	0.2667	0.2046	0.0948
Telegram time	60s	378s	560s

Results - BertAA

Table 4.5: BertAA experiment results

BertAA	k = 5	k = 10	k = 25
Enron acc	0.98	0.9555	0.899
Enron time			
Techcrunch acc	0.9587	0.9142	0.7296
Techcrunch time			
Telegram acc	0.3153	0.2236	0.0936
Telegram time			

Sources

- [1] ABBASI, Ahmed; CHEN, Hsinchun. Writeprints: A Stylometric Approach to Identity-Level Identification and Similarity Detection in Cyberspace. ACM Trans. Inf. Syst. 2008, vol. 26, no. 2. Issn 1046-8188. Available from doi: 10.1145/1344411.1344413.
- [2] FANG, Yong; YANG, Yue; HUANG, Cheng. EmailDetective: An Email Authorship Identification And Verification Model.
 The Computer Journal. 2020, vol. 63, no. 11, pp. 1775–1787. issn 0010-4620. Available from doi: 10.1093/comjnl/bxaa059.
- [3] FABIEN, Maël; VILLATORO-TELLO, Esau; MOTLICEK, Petr; PARIDA, Shantipriya. BertAA: BERT fine-tuning for Authorship Attribution. In: BHATTACHARYYA, Pushpak; SHARMA, Dipti Misra; SANGAL, Rajeev (eds.). Proceedings of the 17th International Conference on Natural Language Processing (ICON) [online]. Indian Institute of Technology Patna, Patna, India: NLP Association of India (NLPAI), 2020, pp. 127–137 [visited on 2023-11-26]. Available from: https://aclanthology.org/2020.icon-main.16.

