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Named Entity Recognition (NER)

NER aims to recognize and classify names of people, locations,
organizations, products, artworks, domain names, phone numbers, dates,
money, measurements (numbers with units), law or patent numbers etc.

Named entities (NEs) can be one word or multi word.
[overlap with multi word expression (MWE) processing]

Example

NE MWE

Brno 3 7

a priori 7 3

New York 3 3
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Named Entity Recognition (NER)

NER is vital for information extraction (IE).

Example

MIT Press published a book by Patrick Hanks with the title
Lexical Analysis: Norms and Exploitations. MIT Press published a book

by Patrick Hanks with the title

Lexical Analysis: Norms and Exploitations .

MIT Press published a book by Randy Thornhill and Craig T. Palmer
entitled A Natural History of Rape: Biological Bases of Sexual Coercion
MIT Press published a book by Randy Thornhill and Craig T. Palmer

entitled A Natural History of Rape: Biological Bases of Sexual Coercion

Authors Title

Patrick Hanks Lexical Analysis: Norms and
Exploitations

Randy
Thornhill

Craig T.
Palmer

A Natural History of Rape:
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Named Entity Recognition (NER)

Treating the whole multiword NE as one entity can improve advanced
natural language processing:

Example
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NER: recognizing boundaries

Example

Masaryk University in Brno

Masaryk University in Brno

Masaryk University in Brno

Example

The Picture of Dorian Gray

The Picture of Dorian Gray

Nová opera Vladiḿıra

Franze Válka s mloky . . . Nová

opera Vladiḿıra Franze

Válka s mloky . . .
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Named Entity Classification

Common classes: PERSON, ORGANIZATION, LOCATION
Less common classes: MONEY, PERCENT, DATE, TIME
Rare classes: ARTWORK, PRODUCT, ROLE

Example

The White House LOCATION? ORGANIZATION
Othello PERSON? ARTWORK? PRODUCT?
Motorola ORGANIZATION? PRODUCT?
The Pope PERSON? ROLE?
two years ago DATE? nothing?

The main problem is with metonymy.
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Methods for NER

gazetteer methods (list of NEs)

semi-supervised machine learning (bootstrapping)

supervised machine learning (training → model)
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Gazetteer Methods for NER

lists of NEs + substring search algorithms:

list of names

list of company names

list of place names

search all occurences of substrings Sk , . . . ,Sl from lists of pattern strings
P1, . . . ,Pp in a target string T [1 . . .m]
Example algorithms:

näıve multi-pass: O(p(m − n + 1))

improvements: Rabin-Karp, Boyer-Moore, Knuth-Morris-Pratt

single-pass: Aho-Corasick: O(m + k)

where p is the number of patterns,
m is the target (searchable) string length,
n is the average pattern length,
k is the total number of occurrences of the pattern strings in the text
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Gazetteer Methods for NER

Problems: disambiguation + fixedness

Example

May the force be with you!
I was born on May.
Karel May is my favorite writer.

Example

Google was bought by Brand New So-far-unknown Company Inc.
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Semi-supervised methods for NER

bootstrapping = a small degree of supervision
typically requires a small set of seeds

Example

seeds: John, James, Steve
search patterns in contexts:
Peter, David, Michael . . .

Example

[Capitalized words and letters], the CEO of
[Capitalized words and non-capitalized stop words],

Richard Rosenblatt , the CEO of Demand Media ,

Michael Close , the CEO of Enterprise Training Centre ,
. . .
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Semi-supervised methods for NER

good for discovering NEs (fixedness problem solved)
but not good at disambiguation
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Supervised methods for NER

manually annotated training set
manually annotated test set (the golden standard)
+ optionally the gazetteer

discriminative vs. generative methods
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Supervised methods for NER: Annotation

XML-like annotation
Zpı́vali jı́ <ne type="oa">Krásnou <ne type="pf">Meredith</ne></ne>

token-based annotation

token simple IOB IOBSE

Alex PER B-PER S-PER
is O O O
going O O O
with O O O
Marty PER B-PER B-PER
A. PER I-PER I-PER
Rick PER I-PER E-PER
to O O O
Los LOC B-LOC B-LOC
Angeles LOC I-LOC E-LOC
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NER in the Era of Neural Networks

Similarly to traditional ML, NER is solved as classification task for each
token in a sequence.

For sequences, recurrent neural networks (such as LSTM and BiLSTM)
work the best.
However, the dependencies in the token sequence can be long-range.
For this, the transformer architecture works the best.

→

Transformers solve all NLP tasks in one.
BERT [3] uses bidirectional pre-training for language representations.
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Evaluation of NER systems

precision, recall, F1-score
separate precision, recall, F1-score measurements for different classes
the less difficult classes are: DATE, MONEY, PERCENT
the most difficult classes are: ORGANIZATION, ARTWORK

Error analysis:

errors in boundaries detection

errors in class labeling

What is preferred: high precision (and low recall) or high recall (and more
false positives)?

. . . see also [9]
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Current state-of-the-art results

Language System F1
English MUC-71, baseline 58.89%
English MUC-7 human annotation 97.60%
English MUC-7 best result [10] 93.39%
English CONLL-2003 [6] 90.10%
English CONLL-2003 BERT [3] 92.8%
English CONLL-2003 ACE [14] 94.6%
German GermEval 2014 best result [5] 77.14%
German LSTM+CRF+char-based [8] 78.76%
Russian [4] 75.05%
Italian tint2 82.11%
Czech [12] 82.82%
Czech [7] 83.24%
Arabic [1] 65.76%

Check: https://paperswithcode.com/sota/

named-entity-recognition-ner-on-conll-2003
1Message Understanding Conference
2http://tint.fbk.eu/ner.html
Z. Nevě̌rilová IA161 NLP in Practice 04 – Named Entity Recognition 18 / 24

https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003
https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003
http://tint.fbk.eu/ner.html


Currently used datasets

Language Dataset name # size

English ConLL 2003 22,137 sentences
English OntoNotes 5.0 1,445k words
Chinese OntoNotes 5.0 1,200k words
Arabic OntoNotes 5.0 300k words
Czech CNEC 2.0 8,993 sentences
Czech SumeCzech-NER 1,000,000 articles
German ConLL 2003 18,933 sentences
German NoSta-D 26,200 sentences
Italian Evalita (I-CAB) 113,624 words
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Jana Straková, Milan Straka, and Jan Hajič.
A new state-of-the-art Czech named entity recognizer.
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