
05 – Indexing and Searching Very Large Texts
IA161 Natural Language Processing in Practice

M. Jakub́ıček

NLP Centre, FI MU, Brno

November 21, 2023

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 1 / 33

1 Indexing

2 Searching

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 2 / 33

Searching big text corpora

Corpus:

positional attributes – word form, lemma, PoS tag, . . .

structures and structure attributes – documents (e.g. with author, id,
year, . . .), paragraph, sentence

searching: Manatee/Bonito/Sketch Engine

http://corpora.fi.muni.cz

https://app.sketchengine.eu

SQL unsuitable (independent rows)

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 3 / 33

http://corpora.fi.muni.cz
https://app.sketchengine.eu

Searching big text corpora

data too big to be stored in memory

data too big to be searched sequentially

⇒ preprocessing needed (indexing, alias corpus compilation)

key decisions are:
▶ trade off between compile-time (preprocessing) and run-time
▶ trade off between in memory and off-memory processing

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 4 / 33

Zipf’s law I

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

zipf(x)

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 5 / 33

Zipf’s law II

may be simplified to inductive definition:

Zipf’s law (simplified)

frequency of the n-th element fn ≈ 1
n · f1

⇒ frequency is inversely proportional to the rank according to
frequency

⇒ one needs really large corpora to capture all the variety of many
language phenomena

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 6 / 33

Zipf’s law III

enTenTen2008, 3.2G tokens

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 7 / 33

Zipf’s law IV

About 1 billion words is enough to have enough evidence for single word
units. But not for multiwords:

word Brown (1M) BNC (100M) enTenTen08
(2.7G)

enTenTen15
(15.7G)

carbonation 0 5 429 2,817

weird phrase 0 0 14 34

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 8 / 33

Building corpora

1 content definition (what will it be used for? how do I get texts?)

2 obtaining data (e.g. crawling)

3 data cleaning (spam, boilerplate, duplicates)

4 tokenization

5 sentence segmentation

6 further annotation (PoS tagging)

7 corpus indexing and analysis

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 9 / 33

Building corpora

1 content definition (what will it be used for? how do I get texts?)

2 obtaining data (e.g. crawling)

3 data cleaning (spam, boilerplate, duplicates)

4 tokenization

5 sentence segmentation

6 further annotation (PoS tagging)

7 corpus indexing and analysis

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 10 / 33

Corpus indexing

text corpus is a database

standard (=relational) database management systems are not suitable
at all

▶ text corpus does not have relational nature

special database management systems needed

⇒ Manatee

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 11 / 33

REGEX
cheat sheet .
exactly one unspecified character
w.n win won wen wun wan
ca. cat car cap cab can

* zero or more occurrences of the
preceding character
a*h h ah aah aaah aaaah

c.*ing words starting c- and
ending –ing: cooking

*ool error: missing character
before asterisk

c.* word starting c-

?
preceding character is optional
colou?r color colour
bet? be bet

^ not, brackets are compulsory
[^m]et pet get bet let

(but not met)
[^mpg]et set let (but not met

pet get)

()
grouping, prioritizing
meter|re meter or re
met(er|re) meter or metre

[]
list, range – one character from
content of the brackets
[mpgb]et met pet get bet
m[2-5] m2 m3 m4 m5
[0-9]* any number of digits
[a-z] one lowercase letter
[A-Z]* any number of

uppercase letters:
UNESCO, UK, WIFI

[A-Za-z]* any number of
letters (but not
numbers)

|
OR – the characters to the left or
those on the right
get|met get or met
met(er|re) meter or metre

+
one or more occurences of the
preceding character (compare *)
a+h ah aah aaah aaaah

hallo+ hallo halloo hallooo
halloooo

{ }
repetition
gr{2,4} grr grrr grrrr
[A-Z]{3} 3-letter acronyms
(bla){2,3} blabla blablabla

\
escaping, removes or adds special
meaning to a character
... finds 3-letter words
\.\.\. finds three dots
\w finds any letter

REGEX character classes

These classes also cover non-English (Unicode) characters, e.g. ñ ř ç 香 ж ش
 shortcut NOT

[[:alpha:]] any letter including Unicode \w \W

[[:digit:]] any digit, equivalent to [0-9] \d \D

[[:alnum:]] any digit or letter including Unicode

[[:lower:]] any lowercase letter including Unicode

[[:upper:]] any uppercase letter including Unicode

[[:punct:]] punctuation -!”#$%&'()*+,./:;<=>?@]_`{[

[[:space:]] whitespace character space, new line, tab, carriage return \s \S

REGEX examples

k.* words starting with k

.*k.* starting, containing or ending with k (including just k)

.+ment words ending with -ment (but not just ment)

[^x]+x[^x]+ words containing x but not starting or ending with it

[[:upper:]][[:lower:]]* words starting with one capital letter

[[:upper:]]* acronyms incl. unicode: EU, SRPŠ, ЖЭК

[a-z]*\d[a-z]* lowercase words containing a digit: face2face

(kilo|centi)? metre kilometre centimetre metre

dog|.*cat|mouse dog OR cat OR pussycat OR tomcat etc. OR mouse

Extended regex manual on http://ske.li/regex
For complete information, google “regular expressions cheat sheet or tutorial”

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 12 / 33

CQL cheat sheet

sample

syntax

[lemma="go"]
[lemma="work" & tag !="V.*"]

 [tag="N.*"][]{1,5}[tag="V.*"] within <s/>

& joins two or more conditions for the same token

{} [word="ha"]{3} finds ha ha ha

[tag="N.*"]{2,5} finds 2, 3, 4 or 5 nouns

?
makes the preceding token optional
[lc="new"][lc="cheap"]?[lc="phone"]
finds both new phone and new cheap phone

| [lemma="accommodate"]|[lemma="put"][lc="up"] finds

accommodate or put up

()
the tokens inside behave as one group
[lc="might"]([lc="as"][lc="well"])? [tag="V.*"]

finds both might as well go and might go

*
unlimited (max. 100) repetitions of the preceding token

<s> []* [word="\?"]</s> within <s/> finds sentences

finishing with a question mark

<> used for structures such as documents, paragraphs and

sentences: <s> beginning � </s> end � <s/> all

~
searches for chop followed by carrot and its 15 most similar

nouns (vegetables)
[lemma="chop"] []{0,3} ~15"carrot-n"

Default attribute
Makes queries easier to read. It is applied to each token without square

brackets. This query
[lc="might"]([lc="as"][lc="well"])? [tag="V.*"]

can be simplified like this:

 "might"("as" "well")? [tag="V.*"]

within <s/>
ensures that the result is found only if it is inside the same sentence
[tag="N.*"] [] [tag="V.*"] within <s/>

something shorter within something longer

finds something shorter only if it appears inside something longer, e.g.

adjective technical but only if it appears inside a sequence of 3 adjectives
[lc="technical"]within [tag="J.*"]{3}

<s/> containing
finds sentences which contain something else
<s/> containing [tag="N.*"] [] [tag="V.*"]

something longer containing something shorter

finds something longer only if it contains something shorter
[tag="N.*"][]{1,3}[tag="V.*"] containing [lc="often"]

Only the thing before within/containing will be highlighted in red as

KWIC. Using the other operator to change the highlighting.

meet
finds something (staff) only if something else (member) is to the left/right
def.attr. lemma (meet "staff" "member" -1 2)

Structures
<doc> <p> <s> beginning of a document, paragraph, sentence � </doc>

</p> </s> end of a structure � <doc/> <p/> <s/> the whole structure

Structures in CQL
<doc>[] finds the first token of each document

[lc="local"] within <doc region="UK"/> finds the word local in

documents whose region is UK

full CQL manual online: http://ske.li/cql

CQL cheat sheet

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 13 / 33

most frequently used tags in the

English tagset
N.* noun

V.* verb

J.* adjective

RB.? adverb

PP.? pronoun

CC conjunction

IN preposition

DT determiner

CD numeral

RP particle

Click to display the tagset of your corpus.

Full English tagset
CC coordinating conjunction and
CD cardinal number 1, third
CDZ possesive pronoun one’s
DT determiner the
EX existential there there is
FW foreign word d’hoevre

IN preposition, subord.
conjunction

in, of, like

IN/t
hat that as subordinator that

JJ adjective green
JJR adjective, comparative greener
JJS adjective, superlative greenest
LS list marker 1)
MD modal could, will
NN noun, singular or mass table
NNS noun plural tables

NNSZ possesive noun plural
people’s,
women’s

NNZ possesive noun, singular
or mass

year’s,
world’s

NP proper noun, singular John
NPS proper noun, plural Vikings

NPSZ possesive proper noun,
plural

Boys’,
Workers’

NPZ possesive noun, singular
Britain’s,
God’s

PDT predeterminer
both the
boys

PP personal pronoun I, he, it
PPZ possessive pronoun my, his
RB adverb (however, naturally, here)
RBR adverb, comparative better
RBS adverb, superlative best
RP particle give up

SENT Sentence-break, punctuation . ! ?
SYM Symbol / [= *
TO infinitive ‘to’ to go
UH interjection Ahh!
VB verb be, base form be
VBD verb be, past tense was, were

VBG verb be, gerund/present
participle

being

VBN verb be, past participle been

VBP verb be, sing. present,
non-3d am, are

VBZ verb be, 3rd person sing.
present

is

VH verb have, base form have
VHD verb have, past tense had

VHG verb have,
gerund/present participle having

VHN verb have, past participle had

VHP verb have, sing. present,
non-3d

have

VHZ verb have, 3rd person
sing. present

has

VV verb, base form take
VVD verb, past tense took

VVG verb, gerund/present
participle

taking

VVN verb, past participle taken

VVP verb, present, not 3rd
person

take

VVZ verb, 3rd person sing.
present

takes

WDT wh-determiner which
WP wh-pronoun who, what
WPZ possessive wh-pronoun whose
Z possessive ending s

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 14 / 33

Vertical text
with POS tags

and other attributes

www.sketchengine.eu

Vertical text
with structures:

sentence and glue

www.sketchengine.eu

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 15 / 33

Indexing corpora in Manatee

Key data structures for a positional attribute:

lexicon
▶ because operations on numbers are just so much faster than on strings

corpus text
▶ to iterate over positions

inverted (reversed) index
▶ to give fast access to positions for a given value

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 16 / 33

How to store integer numbers

given Zipf’s distribution: fixed-length storing very inefficient

variable-length more complicated but yielding much smaller and
quicker indices

variable-length bit-wise universal Elias’ codes: gamma, delta codes

cf. Huffman coding

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 17 / 33

How to store integer numbers

BNC: 112,345,722 tokens

whole data 4-byte encoding: 449,382,888 bytes

whole data delta difference coding: 189 MB

the: frequency 5,415,707 (4.8 %)

4-byte integer encoding: 21,662,828 bytes

delta difference coding: 5,213,473 bytes (24 %)

enTenTen20: 43,125,207,462 tokens

whole data 4-byte encoding: 172,500,829,848 bytes

whole data delta difference coding: 75 GB

the: frequency 1,915,064,722 (4.44 %)

4-byte integer encoding: 7,660,258,888 bytes

delta difference coding: 1,877,715,456 bytes (24.5 %)

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 18 / 33

Indexing corpora in Manatee

Structures and operations:

operations in between: string (str) – number (id) – position (poss)

lexicon building: ⇒ word-to-id mapping ⇒ operations on numbers,
not strings ⇒ id2str, str2id

inverted index: id2poss

corpus text: pos2id

yields transitively also pos2str, str2poss

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 19 / 33

Searching corpora in Manatee

key idea: operations on sorted forward-only streams of positions

FastStream – single position stream

RangeStream – stream of position pairs (structures: from position, to
position)

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 20 / 33

CQL

= Corpus Query Language (Christ and Schulze, 1994)

positions and positional attributes: [attr="value"]

structures and structural attributes: <str attr="value">

example:
[word=".*ing" & tag="V.*"]

<doc id="20[5-9].*"

established a within <str/> query:

[tag="N.*"]+ within <s/>

and alternative meet/union query:

(meet [lemma="take"] [tag="N.*"] -5 +5)

(union (meet ...) (meet ...))

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 21 / 33

CQL in Manatee/Bonito

ehnancements and differences to the original CQL syntax

within <query> and containing <query>

meet/union (sub)query

inequality comparisons

frequency function

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 22 / 33

within/containing queries

searching for particles:

[tag="PR.*"] within [tag="V.*"] [tag="AT0"]?

[tag="AJ0"]* [tag="(PR.?|N.*)"] [tag="PR.*"] within

<s/>

searching for a Czech idiom “hnout někomu žluč́ı” (“to get
somebody’s goat”):
word-by-word translated as:
hnout “move” [V, infinitive]
někomu “somebody” [N, dative]
žluč́ı “bile” [N, instrumental].

<s/> containing [lemma="hnout"] containing

[tag=".*c3.*"] containing [word="žlučı́"]

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 23 / 33

within/containing queries

structure boundaries: begin: <str>, whole structure: <str/>, end:
</str>

changes: within <str> not allowed anymore, use within <str/>

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 24 / 33

meet/union queries

combined with regular query: <s/>

containing (meet [lemma="have"] [tag="P.*"] -5 5)

containing (meet [tag="N.*"] [lemma="blue"])

changes: meet/union queries can be used on any position, they can
contain labels and no MU keyword is required (and deprecated):
(meet 1:[] 2:[]) & 1.tag = 2.tag

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 25 / 33

Inequality comparisons

former comparisons allowed only equality and its negation:
[attr="value"] [attr!="value"]

inequality comparisons implemented: [attr<="value"]
[attr>="value"] [attr!<="value"] [attr!>="value"]

intended usage:
[tag="AJ.*"] [tag="NN.*"] within <doc year>="2009">

sophisticated comparison performed on the attribute value: <doc
id<="CC20101031B"> matches e.g. BB20101031B, CC20091031B,

CC20101030B CC20101031A.

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 26 / 33

Fixed string comparisons

normally the CQL values are regular expressions

sometimes this is not desirable (batch processing needs escaping of
metacharacters)

new == and !== operator introduced for fixed strings comparison

no escaping needed except for ’”’ and ’\’
examples: ”.”, ”$”, ” ” matches a single dot, dollar sign and tilda,
respectively, ”\n” matches a backslash followed by the character n,

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 27 / 33

Frequency function

a frequency constraint allowed in the global conditions part of CQL:
1:[tag="PP.*"] 2:[tag="NN.*"] & f(1.word) > 10

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 28 / 33

Performance evaluation

Table: Query performance evaluation – corpora legend: ◦ BNC (110M tokens),
• BiWeC (version with 9.5G tokens), ∗ Czes (1.2G tokens)

query # of results time (m:s)

◦ [lemma="time"] 179,321 0.07

◦ [lemma="t.*"] 14,660,881 3.12

◦ Ex: particles 1,219,973 33.36

• Ex: particles 97,671,485 32:26.48

∗ Ex: idioms 66 1:6.86

◦ Ex: meet/union 3 8.47

• Ex: meet/union 1457 7:13.12

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 29 / 33

CQL query evaluation
Example: [tag="ADJ"] [(word="record" | word="process") & tag="NOUN"] within <doc year="2012"/>

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 30 / 33

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 31 / 33

Conclusions

special database management systems for processing text corpora
needed

trade-offs between compile-time and run-time, in-memory and
off-memory

CQL

Manatee

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 32 / 33

Assignment

M. Jakub́ıček IA161 NLP in Practice 05 – Indexing and Searching Very Large Texts 33 / 33

	Indexing
	Searching

