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Furniture that puts gaming first

Gaming is more than a fun past-time. It is a way to wind down and take
your mind off everyday hassles, and to connect with people everywhere.
For some, it is even a livelihood. With an ever-increasing number of
gamers worldwide and a rapidly growing market, getting into gaming was a
natural step for IKEA.
The new gaming range will target PC gamers and include six product
families: HUVUDSPELARE, UTESPELARE, MATCHSPEL, GRUPPSPEL,
UPPSPEL, LÅNESPELARE. All UPPSPEL products have been designed
by IKEA and ROG in close collaboration.
In total, the new gaming range includes more than 30 products, covering
both furniture – gaming desks and chairs, a drawer unit – and accessories –
a mug holder, a mouse bungee, a neck pillow, a ring light and many more.
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Automatic relation extraction
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Semantic Networks

network representing relations between concepts

WordNet – lexical database of English
I synsets, main relation hyponymy/hypernymy, meronymy, synonymy,

antonymy. . .
I Multilingual Wordnet network

knowledge graph
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Why would you do that?

semantic analysis (house → home, music, MD?)

query expansion (dog → poodle, terrier. . . )

lexical substitution (match → game)

machine translation

question answering

domain classification (lemon, apple, banana → fruit)

summarization

paraphrase

Example

Human illuminates Document
AG[bird:1] VERB sezobnout SUBS[feed:1]
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What do we need?

morphological tags

syntactic analysis (phrases)

dataset (dictionary, corpus, Wikipedia...)
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Pattern recognition

regular expression to match Part-of-Speech and text

Example

NP {,} especially {NP, }* {or |and} NP
...most European countries, especially France, England, and Spain.
European country >France
European country >England
European country >Spain

Example

e.g. {NP,}* {and |or} NP.
...e.g. apples, bananas, or pears.
related terms
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Example

NP such as {NP, }* {and |or} NP

common domestic animals such as the ferret and the fancy rat
domestic animal >ferret
domestic animal >(fancy) rat
in areas with a long history of mining such as South-west England
mining >South-west England
in areas (with a long history of mining) such as South-west England
area >South-west England

remove stopwords

detect optional adjunct phrases

detect named entities
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Corpus query

special case of pattern recognition, CQL query

bigger data at hand, less options

Example

je/jsou
2:[k="k1"&c="c1"] ([lc=","] [k="k1"])*

([lc="a"|lc="i"|lc="nebo"|lc="či"] [k="k1"])?

[lemma lc="být"&tag="k5eAaImIp3.*"&lc!="ne.*"]

([k="k1"&c="c[1246]"] [k="k2"]{0,2})?
1:[k="k1"&c="c[1246]"]

experiment on domain dictionary: precision 40 %, when limited to
dictionary terms 52 %
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[lemma lc="být"&tag="k5eAaImIp3.*"&lc!="ne.*"]

([k="k1"&c="c[1246]"] [k="k2"]{0,2})?
1:[k="k1"&c="c[1246]"]

experiment on domain dictionary: precision 40 %, when limited to
dictionary terms 52 %

A. Rambousek IA161 NLP in Practice 12 – Automatic relation extraction 11 / 20



Multilingual translation

using translation equivalents from multilingual dictionary to provide
synonyms

Example

st̊ul = table
table = st̊ul, stolek
st̊ul = stolek
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Synonym transitivity

expanding relations based on existing relations (transitive closure)

Example

city = town, town = municipality
⇒ city = municipality
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Distributional approach

vector space model

word-context frequency matrix

clustering

similar context 6= synonym

e.g. Sketch Engine thesaurus
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Neural networks

word embeddings

position embeddings – relative distance between words

part of speech embeddings – tag PoS for each word

WordNet information may help

combine properties to get relations between entities in sentence
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TOEFL test evaluation

evaluation by solving TOEFL synonym test

Choose synonym for fabricate.
I construct, alter, select, demonstrate

build synonym set for each word

detect overlap

success rate 88 %
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SemEval

various tasks evaluating computational semantic analysis systems

human annotators provide gold standards

NLP systems are evaluated

tasks include Word Sense Disambiguation, Machine Translation,
Information Extraction, Learning Semantic Relations. . .

SemEval-2015 Task 17: Taxonomy Extraction Evaluation (TExEval)
I 6 tools, mostly using Wikipedia documents
I best results: web corpus, lexico-syntactic patters, morphological

structure, WordNet lookup
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