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Furniture that puts gaming first

Gaming is more than a fun past-time. It is a way to wind down and take
your mind off everyday hassles, and to connect with people everywhere.
For some, it is even a livelihood. With an ever-increasing number of
gamers worldwide and a rapidly growing market, getting into gaming was a
natural step for IKEA.

The new gaming range will target PC gamers and include six product
families: HUVUDSPELARE, UTESPELARE, MATCHSPEL, GRUPPSPEL,
UPPSPEL, LANESPELARE. All UPPSPEL products have been designed
by IKEA and ROG in close collaboration.

In total, the new gaming range includes more than 30 products, covering
both furniture — gaming desks and chairs, a drawer unit — and accessories —
a mug holder, a mouse bungee, a neck pillow, a ring light and many more.
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Automatic relation extraction
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Semantic Networks

@ network representing relations between concepts
o WordNet — lexical database of English

» synsets, main relation hyponymy/hypernymy, meronymy, synonymy,
antonymy. ..
» Multilingual Wordnet network

@ knowledge graph
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Why would you do that?

semantic analysis (house — home, music, MD?)
query expansion (dog — poodle, terrier.. )

lexical substitution (match — game)
question answering

domain classification (lemon, apple, banana — fruit)

°

°

°

@ machine translation
°

°

@ summarization

°

paraphrase
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Why would you do that?

semantic analysis (house — home, music, MD?)
query expansion (dog — poodle, terrier. . .)

lexical substitution (match — game)

machine translation

question answering

domain classification (lemon, apple, banana — fruit)

summarization

paraphrase

Example

Human illuminates Document
AG[bird:1] VERB sezobnout SUBS|feed:1]
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What do we need?

@ morphological tags
@ syntactic analysis (phrases)
o dataset (dictionary, corpus, Wikipedia...)
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Pattern recognition

regular expression to match Part-of-Speech and text

A. Rambousek IA161 NLP in Practice



Pattern recognition

regular expression to match Part-of-Speech and text
Example
NP {,} especially {NP, }* {or |and} NP
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Pattern recognition

regular expression to match Part-of-Speech and text

Example

NP {,} especially {NP, }* {or |and} NP

...most European countries, especially France, England, and Spain.
European country >France

European country >England

European country >Spain
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Pattern recognition

regular expression to match Part-of-Speech and text

Example

NP {,} especially {NP, }* {or |and} NP

...most European countries, especially France, England, and Spain.
European country >France

European country >England

European country >Spain

Example
e.g. {NP,}* {and |or} NP.
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Pattern recognition

regular expression to match Part-of-Speech and text

Example

NP {,} especially {NP, }* {or |and} NP

...most European countries, especially France, England, and Spain.
European country >France

European country >England

European country >Spain

Example

e.g. {NP,}* {and |or} NP.
...e.g. apples, bananas, or pears.
related terms
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Example
NP such as {NP, }* {and |or} NP
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Example

NP such as {NP, }* {and |or} NP

common domestic animals such as the ferret and the fancy rat
domestic animal >ferret

domestic animal >(fancy) rat
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Example

NP such as {NP, }* {and |or} NP

common domestic animals such as the ferret and the fancy rat
domestic animal >ferret

domestic animal >(fancy) rat

in areas with a long history of mining such as South-west England
mining >South-west England
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Example

NP such as {NP, }* {and |or} NP

common domestic animals such as the ferret and the fancy rat
domestic animal >ferret

domestic animal >(fancy) rat

in areas with a long history of mining such as South-west England
mining >South-west England

in areas (with a long history of mining) such as South-west England
area >South-west England

@ remove stopwords
@ detect optional adjunct phrases

@ detect named entities

A. Rambousek IA161 NLP in Practice 12 — Automatic relation extraction 9 /20



No.|Pattern Number of{Number of Intermediary

occurrences|relevant precision (%)
occurrences

1. |other than (168 164 97.6

2. |especially |120 90 75

3. |principally |11 6 54.5

4. |usually 18 14 77.8

5. |such as 2470 1950 78.9

6. |in particular|78 48 61.5

7. le(g(.) 280 216 77.1

8. |become 780 510 66.7

9. |another 92 72 78.3

10. [notably 76 42 55.3

11.|particularly {130 80 61.5

12. |except 13 4 30.8

13. |called 270 220 815

14. |like 1600 1300 813

15.|including  |670 430 64.2
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Corpus query

@ special case of pattern recognition, CQL query

@ bigger data at hand, less options
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Corpus query

@ special case of pattern recognition, CQL query
@ bigger data at hand, less options

Example

je/jsou

2: [k="k1"&c="c1"] ([lc=","] [k="k1"])*
([1c="a"|lc="i"|lc="nebo"|lc="&€i"] [k="k1"])?
[lemma lc="byt"&tag="kbeAaImIp3.*"&lc!="ne.*"]
([k="k1"&c="c[1246]"] [k="k2"]{0,2})7

1: [k="k1"&c="c[1246]"]

experiment on domain dictionary: precision 40 %, when limited to
dictionary terms 52 %
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Multilingual translation

using translation equivalents from multilingual dictionary to provide
synonyms
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Multilingual translation

using translation equivalents from multilingual dictionary to provide
synonyms

Example

stil = table
table = stdl, stolek
stil = stolek
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Synonym transitivity

e expanding relations based on existing relations (transitive closure)

Example
city = town, town = municipality
= city = municipality
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Distributional approach

vector space model
word-context frequency matrix
clustering

similar context # synonym

e.g. Sketch Engine thesaurus
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Neural networks

word embeddings

Sentence Convolution Feature

(TITTTITTIT)

‘Convolution

Max Poaling

WordNet information may help

position embeddings — relative distance between words
part of speech embeddings — tag PoS for each word

combine properties to get relations between entities in sentence

Representation of Word Atiention Weight

The aUthoT of a keygen uses » iSASSEMBIE 1 ook st the raw
assembly code

Message-Topic | The pulitzer Commities issues an Official citation expiaining e reasons for the
avar
CauseEffect | 1. pypst has been Caused by warer hammer pressure
e Even i have moved inta high-definition broadcast
@ position Embedding ‘Component-Whale oae‘ls;rl showed a PhOtO OF apple tr= DIOSSOM on a fruit tree in the Central
‘Member-Collection

=
POS EmBedding.

They tried an assault of their OWIN an hour later, with two columns of sixtzen LaNKs

backed by  battalion of panzer grenadiers
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TOEFL test evaluation

evaluation by solving TOEFL synonym test

Choose synonym for fabricate.
» construct, alter, select, demonstrate

build synonym set for each word

detect overlap

success rate 88 %
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SemEval

various tasks evaluating computational semantic analysis systems

°
@ human annotators provide gold standards
@ NLP systems are evaluated

°

tasks include Word Sense Disambiguation, Machine Translation,
Information Extraction, Learning Semantic Relations. ..
SemEval-2015 Task 17: Taxonomy Extraction Evaluation (TExEval)

> 6 tools, mostly using Wikipedia documents
> best results: web corpus, lexico-syntactic patters, morphological
structure, WordNet lookup
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