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Topic modeling

organize, summarize, and understand large collections of documents
with no a priori knowledge

discover unknown topical patterns in collection of documents

dimensionality reduction – instead of taking into account every word
in the document, take into account only words representing the
document topics

topic – group of related words representing concepts (→ document
tagging)

statistical, unsupervised modeling

Zuzana Nevě̌rilová IA161 NLP in Practice 07 – Topic Identification, Topic Modeling 4 / 35



Topic Modeling and Topic Classification

topic modeling – find document representation by discovering topics
present in the document + how much they are present (e.g. 10% horror,
70% fun, 25% Australia, 30% nature)
topic classification – categorize documents into a set of (predefined) topics

supervised method

best approach is to train for a specific set of documents, e.g.,
I cluster company documents into invoices, contracts, purchase orders,

delivery notes, other
I cluster customer emails into customer complaints, request for contract

end, relocation notice, other
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Topic Modeling – Applications

recommender systems

document classification (one or more categories a document fits into)

bio-informatics (interpret biological data)

chatbots, topic tracking in dialogues

document summarization (via topic names, a document is seen as a
collection of topics, each with a weight)
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Recommender Systems

recommend the best product for the user

clusters of users, based on preference

clusters of products

Netflix prize
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Bio-informatics

categorize patients into risk groups based on text protocols

detect common genomic features based on gene sequence data

group drugs by diagnosis
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Topic Modeling Approaches

Latent Semantic Analysis, Latent Semantic Indexing (LSA/LSI) –
matrix factorization

Probabilistic Latent Semantic Analysis (pLSA) – probabilistic
decomposition

Latent Dirichlet Allocation (LDA) – iterative probabilistic method

other decomposition techniques (e.g., Non-negative Matrix
Factorization, NMF)

other clustering techniques (e.g., k-means of word vectors)
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Latent Semantic Analysis

Works because the distributional hypothesis works.

. . . words that occur in the same contexts tend to have
similar meanings

(Harris, 1954)1

LSA computes how frequently words occur in:

documents

the whole corpus

. . . and assumes that similar documents have similar distribution of word
frequencies

(syntax + semantics are ignored)

1https://aclweb.org/aclwiki/Distributional_Hypothesis
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Latent Semantic Analysis

document = bag of words

vector representation of documents

compare by vector distance (angle)

topic = set of words

See [Ioana, 2020] for detailed explanation.
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LSA – step 1

count document-term matrix (word frequency in documents)

rows = term (words or multi-word expressions), columns = documents

sparse matrix

term D1 D2 D3 D4 D5 D6 D7 D8
abnormality 0 0 0 1 0 1 1 0

blood 0 1 1 2 1 0 1 1
culture 3 0 0 0 0 0 0 0
disease 0 2 3 0 1 1 0 0

rate 0 3 7 0 0 3 1 0
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LSA – step 2

weighting matrix elements

most popular TF-IDF
(Term Frequency × Inverse Document Frequency)

term occurring in many documents is not interesting for analysis

word D1 D2 D3 D4 D5 D6 D7 D8
abnormality 0 0 0 .6 0 .3 .5 0

blood 0 .1 .01 .4 .2 0 .2 .4
culture .8 0 0 0 0 0 0 0
disease 0 .3 .1 0 .2 .03 0 0

rate 0 .8 .04 0 0 .2 .01 0
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LSA – step 3

Singular Value Decomposition (SVD), suitable decomposition for
sparse data
document-term matrix X (m × n) is decomposed into the product of
3 matrices X = UΣV , where

I U – term-topic matrix m ×m
I V – document-topic matrix n × n
I Σ – diagonal matrix

U, V are unitary matrices (AAT = I , I – identity matrix)
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SVD X = UΣV

X =


0 0 0 .6 0 .3 .5 0
0 .1 .01 .4 .2 0 .2 .4
.8 0 0 0 0 0 0 0
0 .3 .1 0 .2 .03 0 0
0 .8 .04 0 0 .2 .01 0



U =


0.72 0.44 0. −0.52 0.13
0.51 0.2 −0. 0.81 −0.21
0. −0. 1. 0. −0.

0.18 −0.32 −0. 0.2 0.91
0.44 −0.81 −0. −0.17 −0.34



V =



0. 0.46 0.04 0.64 0.14 0.31 0.47 0.21
−0. −0.85 −0.07 0.41 −0.03 −0.05 0.3 0.09
1. −0. −0. 0. −0. 0. 0. −0.
0. 0.01 0.05 0.02 0.46 −0.42 −0.23 0.74
−0. −0.1 0.41 −0.04 0.76 −0.01 0.1 −0.47
−0. −0.17 −0.38 −0.21 0.33 0.77 −0.21 0.2
0. 0.03 −0.2 −0.58 0.07 −0.12 0.76 0.15
0. −0.13 0.79 −0.22 −0.26 0.35 0.06 0.34


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SVD X = UΣV

Σ =


0.99 0. 0. 0. 0. 0. 0. 0.

0. 0.85 0. 0. 0. 0. 0. 0.
0. 0. 0.8 0. 0. 0. 0. 0.
0. 0. 0. 0.44 0. 0. 0. 0.
0. 0. 0. 0. 0.18 0. 0. 0.


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LSA – step 4

dimensionality reduction: throw away rows and columns of the matrices2

σ = (0.99, 0.85, 0.8, 0.44, 0.18)
Keep first t singular values (and therefore first t columns from U + first t
rows from V )
t = 3

U =


0.72 0.44 0.
0.51 0.2 −0.

0. −0. 1.
0.18 −0.32 −0.
0.44 −0.81 −0.


V =

 0. 0.46 0.04 0.64 0.14 0.31 0.47 0.21
−0. −0.85 −0.07 0.41 −0.03 −0.05 0.3 0.09
1. −0. −0. 0. −0. 0. 0. −0.


(check absolute values)

2see Truncated SVD https://scikit-learn.org/stable/modules/generated/

sklearn.decomposition.TruncatedSVD.html
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LSA – step 5

cluster close vectors (documents and terms)
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Latent Dirichlet Allocation
same assumptions as in LSA (distributional hypothesis + mixture of
topics in one document)
each document is a mix of topics
LDA discovers topics and their ratio
each word in document was generated by one of the topics
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Example

Document 1: I like to eat broccoli and bananas.
Document 2: I ate a banana and spinach smoothie for breakfast.
Document 3: Chinchillas and kittens are cute.
Document 4: My sister adopted a kitten yesterday.
Document 5: Look at this cute hamster munching on a piece of broccoli.

Example

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching
Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster

Example

Document 1 and 2: 100% Topic A
Document 3 and 4: 100% Topic B
Document 5: 53% Topic A, 47% Topic B
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LDA process

pick fixed number of topics K

for each document d ∈ D, randomly assign topic to each word

improve, for each document d:
I for each word w and topic t:
I assume all topic assignments are correct, except for current word
I calculate p(topic t|document d) – how many words in document have

topic t?
I calculate p(word w |topic t) – how many assignments to topic t for

word w?
I new topic: probability p(topic t|document d)× p(word w |topic t)

repeat and reach almost steady state
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LDA – generative probabilistic model

parametrized vectors of topics and documents
(α and β are concentration parameters)

α
low α → fewer topics are assigned to a document

β

low β → fewer words model a topic
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LDA Output

ψ – the distribution of words for each topic k ∈ K
φ – the distribution of topics for each document d ∈ D

Vector containing coverage of every topic for the document
d1 = [0.3, 0.4, 0.1, . . . ]

Topical characteristic of the corpus
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LSA and LDA: Similarities and differences

preprocessing: lowercase, punctuation removal, stopword removal,
(stemming or lemmatization))

both LDA and LSA ignore the syntactic structure

the number of topics k is the input parameter

LDA assumes arrangements of the words (n-grams)

LDA assumes distribution of words in topics and distribution of topics
in documents are Dirichlet distributions → topics might be more
transparent

output: wordcloud

topic labels are difficult (and not part of LSA/LDA)
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Weaknesses of LSA and LDA

predefined number of topics, wordlist (stopwords),
stemming/lemmatization, ignore text structure

Hierarchical Dirichlet Process (HDP) – unknown number of topics

top2vec: word + document embeddings [Angelov, 2020] – captures
the document semantics using word embeddings

BERTopic – c-TF-IDF (class-based TF-IDF) + embeddings +
document structure
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BERTopic

not a single algorithm

parametrized: topics, hierarchical topics, semi-supervised (guided)

3
3https://medium.com/data-reply-it-datatech/

bertopic-topic-modeling-as-you-have-never-seen-it-before-abb48bbab2b2
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Topic Labeling
represent topic with human-friendly label from the label set of the topic

find Wikipedia articles based on word list

document summarization from topic documents
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Topic Evaluation Methods

Good topics = interpretable topics
Evaluation methods comprise:

eyeballing – pyLDAVis

human judgement

intrinsic methods – perplexity, coherence measures

extrinsic methods – how does the resulting model influence
subsequent task
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Topic Coherence
measuring score for single topic quality by semantic similarity between
words in topic [Röder et al., 2015]

Segmentation – segment topic into pairs of word subset

Probability Estimation – probability of words in documents

Confirmation Measure – “how well” one subset support the other

Aggregation – compute single score (e.g. by arithmetic mean)
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Gensim – LSA

gensim.models.lsimodel.LsiModel(corpus=None,

num topics=200, id2word=None, chunksize=20000, decay=1.0,

distributed=False, onepass=True, power iters=2,

extra samples=100)

chunksize – number of documents in memory (more documents,
more memory)

decay – newly added documents are more important?

power iters – more iterations improve accuracy, but lower
performance

onepass – False to use multi-pass algorithm, for static data increase
accuracy
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Gensim – LDA
gensim.models.ldamodel.LdaModel(corpus=None,

num topics=100, id2word=None, distributed=False,

chunksize=2000, passes=1, update every=1,

alpha=’symmetric’, eta=None, decay=0.5, offset=1.0,

eval every=10, iterations=50, gamma threshold=0.001,

minimum probability=0.01, random state=None, ns conf=None,

minimum phi value=0.01, per word topics=False)

chunksize – number of documents in memory (more documents,
more memory)

update every – number of chunks before moving to next step

chunksize=100k, update every=1 equals to chunksize=50k,
update every=2 (saves memory)

decay – newly added documents are more important?

alpha, eta – preset expected topics and word probability for start

eval every – log perplexity is estimated after x updates (lower
number, slower training)
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