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© Topic Modeling

9 Topic Modeling Approaches
@ Latent Semantic Analysis — LSA
@ Latent Dirichlet Allocation — LDA
@ Topic Modeling with Word Embeddings

© Topic Labeling
@ Topic Evaluation

© Topic Modeling Modules
@ gensim — getting started with LSA and LDA
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Topic modeling

@ organize, summarize, and understand large collections of documents
with no a priori knowledge

@ discover unknown topical patterns in collection of documents

@ dimensionality reduction — instead of taking into account every word
in the document, take into account only words representing the
document topics

@ topic — group of related words representing concepts (— document
tagging)
@ statistical, unsupervised modeling
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Topic Modeling and Topic Classification

topic modeling — find document representation by discovering topics
present in the document + how much they are present (e.g. 10% horror,
70% fun, 25% Australia, 30% nature)

topic classification — categorize documents into a set of (predefined) topics

@ supervised method
@ best approach is to train for a specific set of documents, e.g.,

» cluster company documents into invoices, contracts, purchase orders,
delivery notes, other

» cluster customer emails into customer complaints, request for contract
end, relocation notice, other
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Topic Modeling — Applications

recommender systems
document classification (one or more categories a document fits into)
bio-informatics (interpret biological data)

chatbots, topic tracking in dialogues

document summarization (via topic names, a document is seen as a
collection of topics, each with a weight)
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Recommender Systems

@ recommend the best product for the user
@ clusters of users, based on preference
@ clusters of products

o Netflix prize
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Bio-informatics

@ categorize patients into risk groups based on text protocols
@ detect common genomic features based on gene sequence data

@ group drugs by diagnosis
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Topic Modeling Approaches

e Latent Semantic Analysis, Latent Semantic Indexing (LSA/LSI) —
matrix factorization

@ Probabilistic Latent Semantic Analysis (pLSA) — probabilistic
decomposition

o Latent Dirichlet Allocation (LDA) — iterative probabilistic method

@ other decomposition techniques (e.g., Non-negative Matrix
Factorization, NMF)

@ other clustering techniques (e.g., k-means of word vectors)
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Latent Semantic Analysis

Works because the distributional hypothesis works.

... words that occur in the same contexts tend to have
similar meanings

(Harris, 1954)
LSA computes how frequently words occur in:
@ documents
@ the whole corpus

and assumes that similar documents have similar distribution of word
frequencies

(syntax + semantics are ignored)

"https://aclweb.org/aclwiki/Distributional_Hypothesis
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Latent Semantic Analysis

@ document = bag of words
@ vector representation of documents
@ compare by vector distance (angle)

@ topic = set of words

See [loana, 2020] for detailed explanation.
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LSA —step 1

@ count document-term matrix (word frequency in documents)

@ rows = term (words or multi-word expressions), columns = documents

@ sparse matrix

term D1 D2 D3 D4 D5 D6 D7 D8
abnormality | 0 0 0 1 0 1 1 0
blood 0 1 1 2 1 0 1 1
culture 3 0 0 0 0 0 0 0
disease 0 2 3 0 1 1 0 0
rate 0 3 7 0 0 3 1 0
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LSA — step 2

@ weighting matrix elements

@ most popular TF-IDF
(Term Frequency x Inverse Document Frequency)

@ term occurring in many documents is not interesting for analysis

word D1 D2 D3 D4 D5 D6 D7 D8
abnormality | 0 0 0 .6 0 3 5 0
blood 0 a1 01 4 2 0 2 4
culture .8 0 0 0 0 0 0 0
disease 0 3 1 0 2 03 O 0
rate 0 8 .04 O 0 2 01 0
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LSA — step 3

@ Singular Value Decomposition (SVD), suitable decomposition for
sparse data

document-term matrix X (m x n) is decomposed into the product of
3 matrices X = ULV, where

» U — term-topic matrix m x m
» V — document-topic matrix n X n
» ¥ — diagonal matrix

U, V are unitary matrices (AAT = [, | — identity matrix)
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SVD X = UxXV
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SVD X = UxXV
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LSA — step 4

dimensionality reduction: throw away rows and columns of the matrices?
o = (0.99,0.85,0.8,0.44,0.18)

Keep first t singular values (and therefore first t columns from U + first t
rows from V)

t=3
0.72 0.44 0. abnormality
0.51 0.2 —0. blood
u=1 0. —0. 1. culture
0.18 —-0.32 0. disease
0.44 —-0.81 -0. rate
0. 0.46 0.04 064 0.14 031 047 0.21
V=1-0.  -08 -0.07 041 -0.03 —-0.05 0.3 0.09
1. —0. —0. 0. —0. 0. 0. -0.

(check absolute values)

2see Truncated SVD https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.TruncatedSVD.html
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LSA — step 5

cluster close vectors (documents and terms)
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Latent Dirichlet Allocation

@ same assumptions as in LSA (distributional hypothesis + mixture of
topics in one document)

@ each document is a mix of topics

@ LDA discovers topics and their ratio

@ each word in document was generated by one of the topics
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Example

Document 1: | like to eat broccoli and bananas.

Document 2: | ate a banana and spinach smoothie for breakfast.
Document 3: Chinchillas and kittens are cute.

Document 4: My sister adopted a kitten yesterday.

Document 5: Look at this cute hamster munching on a piece of broccoli.

v

Example

Topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching
Topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster

Example

Document 1 and 2: 100% Topic A
Document 3 and 4: 100% Topic B
Document 5: 53% Topic A, 47% Topic B
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LDA process

@ pick fixed number of topics K

o for each document d € D, randomly assign topic to each word
@ improve, for each document d:
» for each word w and topic t:
» assume all topic assignments are correct, except for current word
» calculate p(topic t|document d) — how many words in document have
topic t?
» calculate p(word w|topic t) — how many assignments to topic t for
word w?
> new topic: probability p(topic t|document d) x p(word w|topic t)

@ repeat and reach almost steady state
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LDA — generative probabilistic model

parametrized vectors of topics and documents
(o and B are concentration parameters)

low o — fewer topics are assigned to a doclient

low 8 — fewer words model a topic
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LDA Output

1) — the distribution of words for each topic k € K
¢ — the distribution of topics for each document d € D

Vector containing coverage of every topic for the document
d; =[0.3,0.4,0.1,...]

Topical characteristic of the corpus
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LSA and LDA: Similarities and differences

@ preprocessing: lowercase, punctuation removal, stopword removal,
(stemming or lemmatization))

both LDA and LSA ignore the syntactic structure
the number of topics k is the input parameter

LDA assumes arrangements of the words (n-grams)

LDA assumes distribution of words in topics and distribution of topics
in documents are Dirichlet distributions — topics might be more
transparent

@ output: wordcloud
o topic labels are difficult (and not part of LSA/LDA)
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Weaknesses of LSA and LDA

predefined number of topics, wordlist (stopwords),
stemming/lemmatization, ignore text structure
@ Hierarchical Dirichlet Process (HDP) — unknown number of topics

@ top2vec: word + document embeddings [Angelov, 2020] — captures
the document semantics using word embeddings

e BERTopic — c-TF-IDF (class-based TF-IDF) + embeddings +
document structure
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BERTopic

@ not a single algorithm
@ parametrized: topics, hierarchical topics, semi-supervised (guided)

Although BERT is typically

Embed used for embedding

documents, any embedding
technique can be used.

Documents

Cluster documents
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*https://medium.com/data-reply-it-datatech/
bertopic-topic-modeling-as-you-have-never-seen-it-before-abb48bbab2b2
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Topic Labeling
represent topic with human-friendly label from the label set of the topic
o find Wikipedia articles based on word list

@ document summarization from topic documents

Topic model

Single Terms
|algorithms, mining |
results

algorithms
show

model Phrases
mining |::> mining algorithms,
work

efficient system

system
efficient

tecnic Human label
|::>' | mining algorithms |
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Topic Evaluation Methods

Good topics = interpretable topics
Evaluation methods comprise:
eyeballing — pyLDAVis

human judgement

intrinsic methods — perplexity, coherence measures

extrinsic methods — how does the resulting model influence
subsequent task
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Topic Coherence
measuring score for single topic quality by semantic similarity between
words in topic [Roder et al., 2015]

@ Segmentation — segment topic into pairs of word subset
Probability Estimation — probability of words in documents
Confirmation Measure — “how well” one subset support the other
Aggregation — compute single score (e.g. by arithmetic mean)

Reference Corpus

Blah blah blah ...

The cat is a animal
Airplane can fly ...
The dog likes a toy
Beautiful clouds ...

Probabilities
Calculation

Confirmation
Segmentation Measures
m

Topic (Cat, Dog) pimeeee N 0.78
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Gensim — LSA

gensim.models.lsimodel.LsiModel (corpus=None,
num_topics=200, id2word=None, chunksize=20000, decay=1.0,
distributed=False, onepass=True, power_iters=2,

extra samples=100)

@ chunksize — number of documents in memory (more documents,
more memory)

@ decay — newly added documents are more important?

@ power_iters — more iterations improve accuracy, but lower
performance

@ onepass — False to use multi-pass algorithm, for static data increase
accuracy
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Gensim — LDA

gensim.models.ldamodel.LdaModel (corpus=None,
num_topics=100, id2word=None, distributed=False,
chunksize=2000, passes=1, update_every=1,
alpha=’symmetric’, eta=None, decay=0.5, offset=1.0,
eval_every=10, iterations=50, gamma threshold=0.001,
minimum probability=0.01, random_state=None, ns_conf=None,
minimum phi_value=0.01, per_word topics=False)

@ chunksize — number of documents in memory (more documents,

more memory)

@ update_every — number of chunks before moving to next step

@ chunksize=100k, update_every=1 equals to chunksize=50k,
update_every=2 (saves memory)

@ decay — newly added documents are more important?
@ alpha, eta — preset expected topics and word probability for start

@ eval every — log perplexity is estimated after x updates (lower
number, slower training)
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