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I\/I U I\I I Introduction
-1

 How good a machine translation system is?

 Adequacy: Does the output convey the same meaning
as the input sentence?

* Fluency: Is the output good fluent?
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I\/I U I\I I Introduction
-1

e Automatic evaluation metrics are commonly used to
estimate the quality of a MT system

* They allow for low-cost, fast comparison

* Metrics can be divided in three (four) main types:

- Lexical overlap metrics
- Embedding similarity metrics
- Fine-tuned metrics

- (Reference-free metrics or Quality Estimation metrics, they compare translation and source without

. IS
reference. A different task.) NS I,
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I\ll U I\I I Lexical overlap metrics - Intro
|
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* They compare the sequence similarity between the
proposed translation and one (or more) reference(s)

* BLEU (Papineni et al. 2002)
* ChrF / ChrF++ (Popovic, 2015, 2017)
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I\ll U N I Lexical overlap metrics - BLEU
|
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* 1-to 4-gram overlap between machine translation output
and reference translation

 Computed as precision minus a length penalty for too
short translations

. (., output-length o 1
BLEU = min ( 1, recision.)*
( ‘reference-length ([[1 P )

* Usually computed over the whole corpus, and given as a o NS i
score between 0 and 100
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I\ll U I\I I Lexical overlap metrics - BLEU

-

Hypl: A whale is under the table
Hyp2: The cat is at the table

Ref: A catis on the table

* Does not consider word order, nor syntax. It is not suited
for morphologically complex languages
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MUN I BLEU is bad
-

* Routinely scoring among the lowest metrics at WMT
Metrics shared task

* Negatively influences the development of MT research

 Increases of 1-2 BLEU do NOT reflect real increase In
guality when human judgment is involved

* Nonetheless, BLEU is still used by ~98% of the MT
publications (as of 2021)

— Mathur et al. ACL 2020, Kocmi et al. WMT 2021
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I\ll U I\I I Lexical overlap metrics - ChrF
|
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* Averaged F-score over character and word n-grams

chrPchrR
p?.chrP + chrR

where 3 Is the weighting of precision and recall.

chrF; = (1 + p?)

* Operating at character level helps with morphological
variants

* Best lexical overlap metric

* |tis advised to use ChrF++(word 2-grams) as a
secondary metric for languages unsupported by more
advanced metrics
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I\ll U I\I I Embedding similarity metrics - Intro
|
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* They leverage embedding similarity to account for
meaning and compositional diversity, instead of the
simple approximations of overlap metrics
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I\ll U N I Embedding similarity metrics - BERTScore
|
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* Based on pre-trained BERT contextual embeddings

* Creates soft word alignments in candidate and reference with cosine
similarity and then returns a precision, recall and F1 score.

 Embeddings are better at capturing distant dependencies, ordering,
and allow for soft matching

Contextual Pairwise Cosine Maximum Similarity Importance Weighting
Embedding Similarity (Optional)

Reference 71
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I\/I U I\I I Fine-tuned metrics - Intro
|
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* Fine-tuned metrics predict a score based on a given
Input of source, translation, and reference

* Fine-tune LMs by training on human annotated scores

e The most common frameworks for annotation are:

- Direct Assessment (DA, Graham et al., 2013) : assign a score between 0 and 100 (or 0 and 1)

- Multidimensional Quality Metric (MQM, Lommel et al., 2014) : annotate error spans and typology, and
then calculate a score. Higher quality, but harder to produce.

* Fine-tuned metrics are the current state-of-the-art
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I\ll U I\I I Fine-tuned metrics - BLEURT
|
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e BERT-based metric fine-tuned on DA data

* Pre-trained on a large corpus of synthetic data, e.g.
Perturbations of Wikipedia, paraphrases with
packtranslation, masked sentences, ...

* The pre-training augmented with semantic and lexical-
level sighals allows the model to generalize better
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I\ll U I\I I Fine-tuned metrics - COMET
|

F

* Fine-tuned XLM-RoBERTa-large | i l
on DA data |

Feed-Forward

e Source, translation, and reference
are encoded separately, then the Embeddings Concatenation
output are pooled together e )

Pooling Layer
T ‘.‘ ‘."

* An estimator layer on top of the
encoder outputs the predicted T IR Y
score DA score

Hypothesis Source Reference

Rei et al., EMNLP2020



I\ll U I\I I Recent developments - Intro
|
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Metric | avgrank ~ Meic |« o Results of the WMT 22 &

XCOMET-Ensemble 1 0.825
METRICX XXL 1.20 XCOMET-QE-Ensemble* 2 0.808 23
C{}"\-'IET—EE 132 MetricX-23 2 (0.808
, GEMBA-MQM* 2 0.802
E”TE 50 }g? MetricX-23-QE* 2 0.800
LEURT-2 - mbr-metricx-ge* 3 0.788 . .
COMET-20 236 . om ® FINne-tuned metrics score
MATESE 757 CometKiwi® 3 0.782
. COMET 3 0.779
COMETKIWI* 2.70 BLEURT-20 3 0776 the beSt
MS-COMET-22 2.84 KG-BERTScore* 3 0.774
UNITE-SRC* 3.03 R t d I '[
YiSi-1 327 ° ecent aevelopments.
COMET-QE#* 3.33 prismRef 5 0744 p
MATESE-QE* 3 85 mre-score-labse-regular 5 0.743 . )
M, 4~ 3‘8? BERTscore 5 0.742 - XCOMET: explainble metric
EE . XLsim 6 0.719
BERTSCORE 3.88 LA0epBLEY T 0T - MetricX: encoder-decoder metric
MS-COMET-QE-22% 4.06 ?1]155'4 . 3 3;2‘:
. ORengram_ L
CHRF 4.70 embed_llama 7 0.701
F101sPBLEU 497 BLEU 7 0.696
HWTSC-TEACHER-SIM* | 5.17 C]E!TEU 3 g:}g;ﬁ
T [~ L
BLEE . 5.31 Random-sysname™ 8 0.529
REUSE? 6.69 prismSrc® 9 0.455

Freitag et al., WMT2022/23



I\ll U I\I I Recent developments - xCOMET

-

simultaneously performs sentence-level evaluation and error span
detection

e Curriculum training: 1. DA; 2. MQM augmented with synthetic critical
errors; 3. high-quality MQM

» State-of-the-art achieved by ensembling 1 XL and 2 XXL checkpoints
R e B e L e e S -, Sentence-level score
gzlliji:(jzhnsonte-eterson edge of favour : GKCOMET 45.68 g Rel et al-, WMT2023
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I\ll U I\I I Recent developments - MetricX-23
|
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e Based on mT5-XXL encoder-decoder
* Fine-tuned on DA and then MQM

e Some interesting insights on metric training:

- Performance increases with the size of the model

- Train on z-normalized DA scores and raw scores is a trade off between segment and system level
performance

- Fine-tuning on raw MQM scores is better than z-norm

- Fine-tuning on DA is better for system-level, fine-tuning on MQM is better for segment-level

e Best metric iIn WMT22, second-best in WMT23
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Wang et al., 2023 pp

I\ll U I\I I Recent developments - IndicCOMET and AfriCOMET
F :[ Sai B et al., ACL2023

e Based on the COMET framework

* IndicCOMET fine-tunes COMET-DA on a new MQM
dataset for 5 (gu, hi, mr, ml, ta) Indic languages

* AfriCOMET builds upon variations of mMBERT and XLM-
RoBERTa fine-tuned on text and MQM data from
typologically diverse African languages

- They also devise a simplified MQM procedure that can be used by non-experts

* Both model outperform standard COMET for their
specific language sets and can zero-shot into related
languages B ore
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I\/I U I\I I Summary
- |

* Scrap BLEU

e Use the newest neural metrics, such as XCOMET,
when possible

* Use ChrF++ as a secondary metric, when dealing with
unsupported languages

* Devising and training metrics for a specific set of
languages is worthwhile and effective
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