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Math information retrieval

Math information retrieval
The past, the present, and the future

The past: DML-CZ (2005), EuDML (2010), TAČR Omega (2016).
The present: GAČR (2020), TAČR Zéta (2020), FTIR (2020).
The (near) future: Math Information Retrieval with NNLMs:

Bi-Directional Tree-Structured LSTMs,
Soft Cosine Measure (SCM) [1, 2, 3] with math-aware word
embeddings [4, 5, 6].
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Text classification with regularization and soft measure

Text classification as proxy for information retrieval

We use text classification to compare to a related document
similarity measure: the Word Mover’s Distance (WMD) [7].
Text classification is related, but not identical to information
retrieval: topic modeling with LSI improves task performance on
text classification, but not on information retrieval [8].
Since the SCM achieved SOTA performance on the semantic text
similarity task [2], we are confident in its ability to capture
semantics, not just general topics.
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Text classification with regularization and soft measure Abstract

Abstract
Situation

Since Mikolov et al. (2013) [9], word embeddings have become
the preferred word representations for many natural language
processing tasks
Document similarity measures extracted from word embeddings,
such as the soft cosine measure (SCM) and the Word Mover’s
Distance (WMD), were reported to achieve state-of-the-art
performance on the semantic text similarity and text
classification.
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Soft cosine similarity measure
Intuition

Figure: The geometric representation of the documents “Hi, world!” , and
“Hello, world!” in the standard VSM (left), and the soft VSM (right, [3]).
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Soft cosine similarity measure
Definition

Cosine similarity of x and y equals 〈x/‖x‖2, y/‖y‖2〉, where
〈x, y〉 =

(
(x)β

)T
(y)β, β is an orthonormal basis, and ‖z‖2 is the

`2-norm of z.
Soft cosine similarity of x and y equals 〈x/‖x‖2, y/‖y‖2〉, where
〈x, y〉 =

(
(x)β

)TS(y)β, β is a non-orthogonal normalized basis,
‖z‖2 is the `2-norm of z, and S is a word similarity matrix.

We define the word similarity matrix S like Charlet and Damnati
(2017, [2]): sij = max(t, 〈ei/‖ei‖2, ej/‖ej‖2〉)o, where ei and ej are the
embeddings for words i and j, and o and t are free.
We use the implementation in the similarities.termsim
module of Gensim [10].
The worst-case time complexity of the SCM is O(pxpy), where px is
the number of unique words in x and py is the number of unique
words in y.
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Word mover’s distance measure
Intuition

Figure: The Word mover’s distance (WMD) between the VSM representations
of documents “Obama speaks to the media in Illinois” , and “The president
greets the press in Chicago” . [7]

V.Novotný · Text classification with regularization and soft measure · October 29, 2019 7 / 25



Text classification with regularization and soft measure Abstract

Word mover’s distance measure
Definition

The Word mover’s distance (WMD) of x and y equals the minimum
cumulative cost

∑
i,j fijcij of a flow F = (fij) subject to F ≥ 0,∑

j fij = (xi)β, where the cost cij is the Euclidean distance of
embeddings for words i and j.
We use the implementation in PyEMD [11, 12] with the best known
average time complexity O(p3xy log pxy), where pxy is the number of
unique words in x and y.
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Abstract
Problem

Despite the strong performance of the WMD on text
classification and semantic text similarity, its super-cubic
average time complexity is impractical.
The SCM has quadratic worst-case time complexity, but its
performance on text classification has never been compared
with the WMD.
Recently, two word embedding regularization techniques were
shown to reduce storage and memory costs, and to improve
training speed, document processing speed, and task
performance on word analogy, word similarity, and semantic text
similarity. However, the effect of these techniques on text
classification has not yet been studied.
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Word embedding quantization

The CBOW with negative sampling minimizes the following loss:

J(uo, v̂c) = − log
(
σ(〈uo, v̂c〉)

)
−

k∑
i=1

log
(
σ(−〈ui, v̂c〉)

)
,

where v̂c = 1
2w
∑
−w+i≤i≤w+o,i 6=o vi, uo is the vector of a center word

with corpus position o, vi is the vector of a context word with corpus
position i, and the window size w and the number of negative
samples k are free parameters.
Following the approach of Lam [13], we quantize the center word
vector uo and the context word vector vi to ±1/3 during the forward
and backward propagation stages of the training. Since the
quantization function is non-differentiable at certain points, we use
Hinton’s straight-through estimator [14, Lecture 15b] as the gradient:

∇(1/3 · sign) = ∇I,where ∇ is gradient operator and I is identity.
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Orthogonalized word embeddings
Intuition

Word similarity matrix construction
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Orthogonalization

Cholesky factorization
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Abstract
Solution

In our work, we investigate the individual and joint effect of the
two word embedding regularization techniques on the
document processing speed and the task performance of the
SCM and the WMD on text classification.
The SCM has quadratic worst-case time complexity, but its
performance on text classification has never been compared
with the WMD.
For evaluation, we use the kNN classifier and six standard
datasets: BBCSPORT, TWITTER, OHSUMED, REUTERS-21578,
AMAZON, and 20NEWS.
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Word embedding orthogonalization
Introduction

Vít [15] shows that producing a sparse word similarity matrix S′ that
stores at most C largest values from every column of S reduces the
worst-case time complexity of the SCM to O(px), where px is the
number of unique words in a document vector x.
Vít [15] also claims that S′ improves the performance of the soft VSM
on the question answering task and describes a greedy algorithm for
producing S′, which we will refer to as the orthogonalization
algorithm. The orthogonalization algorithm has three boolean
parameters: Sym, Dom, and Idf. Sym and Dom make S′ symmetric and
strictly diagonally dominant. Idf processes columns of S in
descending order of inverse document frequency [16]:

− log2 P(w | D) = log2
|D|

|{d ∈ D | w ∈ d}|
, where D are documents.
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Word embedding orthogonalization

Definition (Orthogonalized word embeddings)
Definition Let E, E′ be real matrices with |V | rows, where V is a
vocabulary of words. Then E′ are orthogonalized word embeddings
from E, which we denote E′ ≤⊥ E, iff for all i, j = 1, 2, . . . , |V | it holds
that 〈e′i, e′j〉 6= 0 =⇒ 〈e′i, e′j〉 = 〈ei, ej〉, where ek and e′k denote the
k-th rows of E and E′.

Theorem (Orthogonalization produces orthogonalized w. e.)

Let E be a real matrix with |V | rows, where V is a vocabulary of words,
and for all k = 1, 2, . . . , |V | it holds that ‖ek‖2 = 1. Let S be a word
similarity matrix constructed from E with the parameter values t = −1
and o = 1. Let S′ be a word similarity matrix produced from S using the
orthogonalization algorithm with the parameter values Sym = 3 and
Dom = 3. Let E′ be the Cholesky factor of S′. Then E′ ≤⊥ E.
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Abstract
Evaluation

We show 39% average kNN test error reduction with regularized
word embeddings compared to non-regularized word
embeddings.
We describe a practical procedure for deriving such regularized
embeddings through Cholesky factorization.
We also show that the SCM with regularized word embeddings
significantly outperforms the WMD on text classification and is
over 10,000× faster.
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Results
T-SNE document visualizations

The following figures show confusion matrices and t-SNE document
visualizations [17] for the soft VSM with non-regularized word
embeddings and for the soft VSM with orthogonalized and quantized
word embeddings.

OHSUMED with non-regularized w.e. and with regularized w.e.,
BBCSPORT with non-regularized w.e. and with regularized w.e.,
REUTERS with non-regularized w.e. and with regularized w.e.,
AMAZON with non-regularized w.e. and with regularized w.e.,
20NEWS with non-regularized w.e. and with regularized w.e..
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Results
Test error I
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Figure: 95% interval estimates for the kNN test error on six text
classification datasets
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Results
Test error II
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Results
Processing speed
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