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Preface

This volume contains the Proceedings of the Eighth Workshop on Recent
Advances in Slavonic Natural Language Processing (RASLAN 2014) held on
December 5–7, 2014 in Karlova Studánka, Czech Republic.

The RASLAN Workshop is an event dedicated to the exchange of informa-
tion between researchers working on the projects of computer processing of
Slavonic languages and related areas going on in the NLP Centre at the Faculty
of Informatics, Masaryk University, Brno. RASLAN is focused on theoretical as
well as technical aspects of the project work, on presentations of the verified
methods together with descriptions of development trends. The workshop also
serves as a place for discussions about new ideas. The intention is to have it as
a forum for presentation and discussion of the latest developments in the field
of language engineering, especially for undergraduates and postgraduates af-
filiated to the NLP Centre at FI MU.

Topics of the Workshop cover a wide range of subfields from the area
of artificial intelligence and natural language processing including (but not
limited to):

* text corpora and tagging,
* syntactic analysis,
* sense disambiguation,
* machine translation, computer lexicography,
* semantic networks and ontologies,
* semantic web,
* knowledge representation,
* logical analysis of natural language,
* applied systems and software for NLP.

RASLAN 2014 offers a rich program of presentations, short talks, technical
papers and mainly discussions. A total of 18 papers were accepted, contributed
altogether by 24 authors. Our thanks go to the Program Committee members
and we would also like to express our appreciation to all the members of the
Organizing Committee for their tireless efforts in organizing the Workshop and
ensuring its smooth running. In particular, we would like to mention the work
of Aleš Horák, Pavel Rychlý and Lucia Kocincová. The TEXpertise of Adam
Rambousek (based on LATEX macros prepared by Petr Sojka) resulted in the
extremely speedy and efficient production of the volume which you are now
holding in your hands. Last but not least, the cooperation of Tribun EU as
a printer of these proceedings is gratefully acknowledged.

Brno, December 2014 Karel Pala
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Language Modelling





Character-based Language Model

Vít Baisa

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

xbaisa@fi.muni.cz

Abstract. Language modelling and also other natural language process-
ing tasks are usually based on words. I present here a more general yet
simpler approach to language modelling using much smaller units of text
data: character-based language model (CBLM).1 In this paper I describe
the underlying data structure of the model, evaluate the model using stan-
dard measures (entropy, perplexity). As a proof-of-concept and an extrin-
sic evaluation I present also a random sentence generator based on this
model.

Keywords: language model, suffix array, LCP, trie, character-based, ran-
dom text generator, corpus

1 Introduction

Current approaches to language modelling are based almost utterly on words.
To work with words, the input data needs to be tokenized which might be
quite tricky for some languages. The tokenization might cause errors which
are propagated to following processing steps. But even if the tokenization
was 100% reliable, another problem emerges: word-based language models
treat similar words as completely unrelated. Consider two words platypus
and platypuses. The former is contained in the latter yet they will be treated
completely independently. This issue can be sorted out partially by using
factored language models [1] where lemmas and morphological information
(here singular vs. plural number of the same lemma) are treated simultaneously
with the word forms.

In most systems, word-based language models are based on n-grams
(usually 3–4) and on Markov chain of the corresponding order where only a
finite and fixed number of previous words is taken into account. I propose a
model which tackles with the above-mentioned problems. The tokenization
is removed from the process of building the model since the model uses
sequences of characters (or bytes) from the input data. Words (byte sequences)
which share prefix of characters (bytes) are stored on the same place in the

1 I call this ChaRactEr-BasEd LangUage Model (CBLM) cerebellum: a part of human
brain which plays an important role in motor control and which is involved also in
some cognitive processes including language processing.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 3–10, 2014. c○ NLP Consulting 2014

mailto:xbaisa@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2014.nlp-consulting.net/


4 Vít Baisa

model. The model uses suffix array and trie structure and is completely
language independent.

The aim of CBLM is to make language modelling more robust and at
the same time simpler: with no need for interpolating, smoothing and other
language modelling techniques.

2 Related work

Character-based language models are used very rarely despite they are de-
scribed frequently in theoretical literature. That is because a standard n-gram
character-based language models would suffer from very limited context: even
10-grams are not expressive enough since they describe only very limited width
of context. Even the famous Shannon’s paper [2] mentions a simple uni-, bi- and
tri-gram models but then it swiftly moves to word-based models.

There have been some attempts to use sub-word units (morphemes) for lan-
guage modelling, especially for speech recognition tasks [3] for morphologi-
cally rich languages like Finnish and Hungarian but they have not gone deeper.

Variable-length n-gram modelling is also closely related but the model
described in [4] is based rather on categories than on substrings from the raw
input data. Suffix array language model (SALM) based on words has been
proposed in [5].

3 Building the model

As input, any plain text (in any encoding but it is most convenient to use UTF-
8) can be used. In a previous version of the model all input characters were
encoded to a 7-bit code (the last bit was used for storing structure information).
Currently the model requires a simpler preprocessing: the data is taken as is—
as a sequence of bytes. Sentences are separated by a newline character. The only
pre-processing is lower-casing—quite common practice.

3.1 Suffix array, longest common prefix array

The next step is suffix array construction. Suffix array (SA) is a list of indexes
(positions) in the input data which are sorted according to lexicographical order
of suffixes starting at the corresponding positions in the data. The Table 1
shows an example of a SA constructed for string popocatepetl. The resulting
SA is in the third column. The last column contains longest common prefix
array (LCP) which corresponds to a number of common characters between
two consecutive suffixes in the SA.

I use libdivsufsort2 library for fast SA construction in O(n log n) time where
n is input data size in bytes. The size of an input is limited to 2 GB since longer

2 https://code.google.com/p/libdivsufsort/

https://code.google.com/p/libdivsufsort/
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Table 1: Suffix array example
I suffix SA sorted suffix LCP
0 popocatepetl 5 atepetl 0
1 opocatepetl 4 catepetl 0
2 pocatepetl 7 epetl 0
3 ocatepetl 9 etl 1
4 catepetl 11 l 0
5 atepetl 3 ocatepetl 0
6 tepetl 1 opocatepetl 1
7 epetl 8 petl 0
8 petl 2 pocatepetl 1
9 etl 0 popocatepetl 2

10 tl 6 tepetl 0
11 l 10 tl 1

data could not be encoded using 4-byte integer indexes. The size of a compiled
SA is O(n log n).

LCP is computed separately using an inverse SA in O(n) time and O(n)
space. To limit the size of LCP array, the highest possible number in LCP array
is 256 (1 B per item). Thus the longest substring which can be stored in the
model has length 256 characters (bytes).

3.2 Trie

Once SA and LCP are built, all prefixes from SA which occur more than N× are
put into trie structure. The N is the only parameter used in construction of the
trie. Each node in the trie stores probability (relative frequency) of occurrence
of the corresponding prefix in SA.

aaaabaabab
aaaabababa
aaabbaaaba
aaabbabab
aababba
aababbbab
aabbaabab
aabbabbab
aabbbbba
abaababbaba
abaabbaba
abaabbbbab
ababbaba

a

b

a

b

b

a

a

a

b

a

b

a

11

9

2

15

9

6

4

5

5

2

4

5

ababbbab
abbbbbaab
baaabaa
baaababab
baaabbba
baabaabbabba
baabbba
babaabba
bababbaaab
babbbababa
babbbbaba
bbabaaaa
bbabbbab

Fig. 1: Construction of a trie from an example suffix array
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In Figure 1 you can see an example of suffix array turned into trie structure.
Only the upper part of the trie is shown. The numbers below the nodes
correspond to frequencies of the prefixes.

The trie is stored in a linear list—the tree structure of the trie is preserved
using integer indexes of the list. Each item of the list stores 4 slots: 1) an address
of the eldest children, 2) probability of the current prefix, 3) the character byte
itself and 4) binary true or false: if the current item is the last node in a row of
siblings.

The siblings are sorted according probability. In Figure 2 there is an example
for substring barb from a Czech model. It is obvious that after the prefix,
characters a, o, i and e are the most frequent. They occur in words like barbar,
barbora, barbie, barbecue, rebarbora etc. The dots in the Figure mean a space
skipped between the trie items (nodes). After substring barbo, the most probable
characters are r (75%) and in ř (22%). See the last two items in Figure 2.
Character ř is in fact represented by two nodes: a node with byte value 197
and its children node (153) but here I have simplified it.

b a r b o i ea
0.14

... ... ... ...
0.01 0.07 0.04 0.040.070.51 0.30

...
r
0.73

ř
0.22

Fig. 2: Trie structure

4 Language model

A language model is a prescription for assigning probabilities to an input data
(in this case a sequence of bytes). Here I present a straightforward algorithm
using the trie as an underlying data structure. It is important to emphasize
that this approach is only a first attempt at language modelling using the trie
described above. Further improvements are to be implemented.

Each node in a trie contains probability distribution of all following char-
acters (bytes). The longer is the path from root to a node, the more accurate is
the probability distribution (and also the lower entropy and perplexity) in the
node since a longer path means a longer context. Following is description of the
algorithm: how to compute a probability of any sequence of bytes.

The algorithm starts from the first byte in the data and from the root of
the trie. If the byte is among the root’s children, the initial probability 1.0 is
multiplied by the corresponding probability stored in the relevant child node.
The algorithm stores the position of the child node and repeats the procedure
for next bytes in the input data. If a current byte is not found among children
at a current position, the current prefix (defined by a path from the root to the
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current position) is shortened from the left (by one byte) and the shortened
path is translated to the root (the same character bytes but a different path).
It holds that if a path (sequence of bytes) is found wherever in the trie then it
must be translatable to the root of the trie. It is a property of the original suffix
array. After the translation, the lookup is repeated. If the byte is not found, the
path is shortened from the left again and translated again until the byte is found
among descendants of the last node in the translated path. It may occur that the
path is shortened to an empty path. In that case the procedure continues from
the root as at the beginning of the algorithm. Every time a byte from the input
data is found among a children of a current position, the overall probability is
multiplied by the probability of the children.

It is necessary that probability of any subsequence of the input data is
greater than 0 otherwise the result probability would be zero too. In n-
gram models the solution is achieved by smoothing language models using
techniques designed like Katz, Kneser-Ney or Good-Turing smoothing. In
CBLM, the problem of zero probability (caused by symbols which are in the
input data but do not occur in an input data more than N×) is solved by
assigning probability pr to all unseen symbols. Probability pr is taken from the
first level in trie—the complement of the sum of probabilities of all child nodes
of the root. For one English model trained on Orwell’s 1984 pr = 0.000018 since
some symbols (+, %) occurred less than N×.

The described procedure above can be slightly modified to obtain a random
text generator (see Section 6). The bytes are not read from the input but
generated randomly from distribution probabilities stored in nodes.

5 Intrinsic evaluation: entropy per byte

The standard way to evaluate language models is to measure entropy per word.
In the case of this model I use entropy H and perplexity PP per byte. The
formulas for test data b1 · · · bN and model m are as follow:

H(m) = − 1
N

N

∑
i=1

log p(bi)

PP = 2H(m)

where N is length of the test data and p(bi) is probability given by the
algorithm.

Table 2 shows results for English and Czech data. The models for English
has been built from British National Corpus and from George Orwell’s 1984.
The test data were Lewis Carroll’s Alice in Wonderland and George Orwell’s
1984. The models for Czech has been built from the Czech National Corpus,
Czech Wikipedia corpus (csWiki) and Czech Web corpus czTenTen3 [6] (csWeb).

3 http://www.sketchengine.co.uk/documentation/wiki/Corpora/czTenTen2

http://www.sketchengine.co.uk/documentation/wiki/Corpora/czTenTen2
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Table 2: Evaluation of Czech and English models on Lewis Carroll’s Alice in
Wonderland and George Orwell’s 1984.

Model Test Size H PP
BNC2 Alice 330 M 2.286 4.879
BNC3 Alice 212 M 2.294 4.904
BNC2 1984 330 M 1.664 3.170
BNC3 1984 212 M 1.671 3.184

SYN20004 1984 362 M 1.837 3.574
csWiki5 1984 300 M 1.850 3.607
csWeb4 1984 312 M 1.571 2.972

Some observations from the tables follow. The BNC2 model has achieved
only a slightly better entropy and perplexity than BNC3 for both test data.
Notable is also the fact that both models assign considerably higher entropy
and perplexity to Alice. It is probably caused by the peculiar language of
Carroll. For comparison—the entropy of English has been estimated to 1.75 [7].
The best Czech model is csWeb5 which obtained 1.571 entropy for Orwell’s
1984.

The performance of the Czech and English models is quite stable. When
Markov model N parameter is fixed, performance (perplexity) differs substan-
tially when languages from different language families are evaluated. See also
the comparable performance of Hungarian and English random generator in
Section 6. Further intrinsic evaluation is to be carried out using a standard sta-
tistical language modelling benchmark, e.g. one billion word benchmark [8] or
Brown corpus.

6 Extrinsic evaluation: random sentence generator

It has been reported that a language model perplexity measure is not correlating
well with the evaluations of applications in which the model is used (e.g. [9]).
That is why some researchers prefer extrinsic evaluation methods over intrinsic
measures. To provide an extrinsic evaluation of the presented model I have
developed a simple random text generator based on CBLM.4 It offers models
for English, Georgian, Hungarian, Japanese, Russian, Turkish, Slovak, Czech
and Latin. Users may save generated sentences (Like link) which are then
available as favourite sentences at the bottom of the web page.

The algorithm is a modification of the language model algorithm. It gen-
erates a random stream of bytes and whenever it generates a second new line
character, the result is written to the output. By using the sequence of bytes
between two newlines, the generator is capable of generating texts roughly on
sentence level.

4 http://corpora.fi.muni.cz/cblm/generate.cgi

http://corpora.fi.muni.cz/cblm/generate.cgi
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To increase legibility, initial letters and named entities in the following
example sentences have been upper-cased. The source data for the examples
were as follow. English: British National Corpus, Czech: czTenTen (first 600 M
tokens), Hungarian: Hungarian Wikipedia, Latin: a Latin corpus and Slovak:
Slovak Wikipedia. In almost all cases N = 3.

English First there is the fact that he was listening to the sound of the shot and
killed in the end a precise answer to the control of the common ancestor of the
modern city of Katherine street, and when the final result may be the structure
of conservative politics; and they were standing in the corner of the room.
Czech Pornoherečka Sharon Stone se nachází v blízkosti lesa. ¶ Máme malý
byt, tak jsem tu zase. ¶ Změna je život a tak by nás nevolili. ¶ Petrovi se to
začalo projevovat na veřejnosti. ¶Vojáci byli po zásluze odměněni pohledem na
tvorbu mléka. ¶Graf znázorňuje utrpení Kristovo, jež mělo splňovat následující
kritéria.
Hungarian Az egyesület székhelye: 100 m-es uszonyos gyorsúszásban a követ-
kező években is részt vettek a díjat az égre nézve szójaszármazékot. ¶ Az
oldal az első lépés a tengeri akvarisztikával foglalkozó szakemberek számára
is ideális szállás költsége a vevőt terhelik.
Slovak Jeho dizajn je v zrelom veku, a to najmä v prípade nutnosti starala sa o
pomoc na rozdiel od mesta prechádza hranica grófstva Cork. ¶ V roku 2001 sa
začala viac zameraný na obdobie 2006 prestúpil do monastiera pri rieke Marica,
ktorú objavil W. Herschel 10. septembra 1785.
Latin Quinto autem anno andum civitates et per grin in multitudinem quae
uerae e aeque ad omne bonum. ¶ Augustinus: video et oratteantur in caelum
clamor eus adiutor meus, et uit, quam hoc crimen enim contentit et a debent.

7 Future work & conclusion

I have described a first approximation of the language model. In the future
I want to exploit more some properties of the trie model, e.g. probabilities
of sequences which follow a given sequence (not necessarily immediately
following it). This would allow to express connections (associations) between
any two byte sequences and to capture a broader context.

Acknowledgement This work was partially supported by the Ministry of
Education of CR within the LINDAT-Clarin project LM2010013 and by the
Czech-Norwegian Research Programme within the HaBiT Project 7F14047.
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A System for Predictive Writing

Zuzana Nevěřilová and Barbora Ulipová

Computational Linguistics Centre
Faculty of Arts, Masaryk University

Arne Nováka 1, 602 00 Brno, Czech Republic
xpopelk@fi.muni.cz, b.ulipova@gmail.com

Abstract. Most predictive writing systems are based on n-gram model
with different size. Systems designed for English are easier than those for
flective languages since even smaller models allow reasonable coverage.
However, the same corpus size is significantly insufficient for languages
with many word forms. The paper presents a new predictive writing
system based on n-grams calculated from a large corpus.
We designed the high-performance server-side script that returns either
the most probable endings of a word or the most probable following
words. We also designed the client-side script that is suitable for desktop
computers without touchscreens.
We calculated 150 millions most frequent n-grams for n = 1, . . . , 12
from a Czech corpus and evaluated the writing system on Czech texts.
The system was then extended by custom-built model that can consist
of domain or user specific n-grams. We measured the key stroke per
character (KSPC) rate in two different modes: one – called letter KSPC –
excludes the control keys since they are input method specific, the other –
called real KSPC – includes all key strokes. We have shown that the system
performs well in general (letter KSPC on average was 0.64, real KSPC
on average was 0.77) but performs even better on specific domains with
the appropriate custom-built model (letter KSPC and real KSPC were on
average 0.63 and 0.73 respectively).
The system was tested on Czech, however it can easily be adapted an
arbitrary language. Due to its performance, the system is suitable for
languages with high inflection.

Keywords: predictive writing, n-gram language model, corpus, KSPC

1 Introduction

Predictive writing is a useful and popular feature embedded in modern web
browsers and cell phones where either endings of an unfinished word or a
following word are suggested to the user. Predictive writing is used in order
to save the number of key strokes and prevent spelling errors. Some users may
even use it to find the correct spelling of words they are not sure about. For
these reasons, predictive writing applications are not only useful for cell phones
and tablets but they can also support writing on conventional keyboards.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 11–18, 2014. c○ NLP Consulting 2014
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We present a predictive writing web application that is suitable for devices
with conventional keyboards. The application is based on the client-server
architecture and thus it can benefit from server perfomance: the language
model can be much larger (and thus more precise) than language models that
have to use the limited memory space of mobile devices.

This paper is organized as follows: Section 2 overviews in short the related
work, in Section 3, we present our system and its extension with custom-built
model. In Section 4, we describe the settings of the evaluation experiment and
the experiment itself. Section 5 discusses the results. In Section 6, we propose
further work for the future.

2 Related Work

Prediction is well established in many tasks e.g. in web browsers and search
engines: a web browser usually keeps the search history, and search engines
use data obtained from their users as well, e. g. Google uses a combination of
phrases from search history of a particular user and overall search history. In
addition, it adds information from Google+ profiles1. The aim of this prediction
is to check spelling and reduction of number of characters the user has to type.

Historically, predictive writing became popular on cell phones with numeric
keyboard. Users became accustomed to cluster keyboards (i.e. keyboards with
highly ambiguous keys) such as Tegic T9 or Motorola iTap. For example, [1]
used vocabularies of 10k, 40k, 160k and 463k words (i.e. unigrams) together
with up to 5 milion n-grams (for n = 2, 3). The authors concluded that n-gram
models are more robust than unigram models (such as T9).

Predictive keyboards on today’s mobile devices serve a slightly different
purpose: the typing error rate on software keyboards is higher than on hard-
ware keyboards. [2] reported “average number of errors on software keyboards
4.55%, and the average number of hardware was 1.36%”. It is thus more com-
fortable when users do not have to type much.

[3] proposes a simple measure to characterize text entry techniques: key
strokes per character (KSPC) “is the number of key strokes required, on
average, to generate a character of text for a given text entry technique in a
given language”. The exact calculation of KSPC depends on both hardware
(i.e. it is different on touchscreen keyboards, hardware keyboards, or stylus
tapping) and software (i.e. how many characters the user has to tap before the
desired word is available to select). For this reason, we calculated two times:
KSPC excluding the control keys (the arrows) and KSPC including all keys. In
this paper, we call the measures letter KSPC and real KSPC respectively. The
letter KSPC includes the tab key since it is the key stroke that leads to selection
of a particular word.

Since the cited text input techniques were primarily developed for English,
less attention is paid to non-English texts. For example, [4, p. 9] only state

1 https://support.google.com/websearch/answer/106230?hl=en

https://support.google.com/websearch/answer/106230?hl=en
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that entry of characters not present in the English alphabet increases the
number of key strokes required. [4] have shown that n-gram based models for
statistical prediction are less reliable for inflected languages but “still offer quite
reasonable predictive power”.

3 The Predictive Writing System

3.1 Server-side design

We implemented a predictive writing server-side script that benefits from n-
grams calculated from the czTenTen corpus. This corpus is currently one of the
largest corpora for Czech2. The data were collected from different websites,
cleaned and deduplicated by the corpora tools [5]. Since the data source
contains mainly texts that were not proof-read, the n-grams do not necessarily
contain only correct Czech. This issue can be serious when using predictive
writing for spelling purposes.

We calculated bigrams using the lscbgr tool and filtered out all bigrams
with minimum sensitivity < 0.0001. We calculated n-grams for n = 3, . . . , 12
using the lscngr tool, then we filtered out all n-grams with frequency of the
respective (n-1)-gram representing the n-gram without its last token (freqn−1)
less than 10. For each such n-gram, we then calculated the score as n · freqn−1.
in order to prefer longer n-grams. For unigrams, we used the lsclex tool3 and
we took all tokens with frequency greater than one and length smaller than 30
characters. All the mentioned parameters were set by experiments. The aim
was to generate a database of n-grams (for n = 1, . . . , 12) with a plausible
coverage on texts but at the same time with a reasonable size. We always took
case-sensitive words, numbers, and punctuation as tokens.

The predictive writing server-side script works basically in two modes:

1. If the input ends with a space, it suggests the following words, i.e. it returns
the first 10 most frequent n-grams. The input is truncated to last 12 tokens
and compared to the n-gram database. We strongly prefer longer n-grams,
so the output is sorted by n-gram size and then by the n-gram score.

2. If the input does not end with a space, it suggests possible endings of the
last word. The calculation is based on previous 11 tokens and the unfinished
token.

The server-side script functionality is quite simple but for performance
reasons, the n-grams were stored in finite state automata (FSA) using the fsa
package4.

2 In Nov 2014, it contained 5,069,447,935 tokens and 4,175,089,440 words, see
https://ske.fi.muni.cz/auth/corpora/

3 All tools are documented in the Sketch Engine Project Wiki:
http://www.sketchengine.co.uk/documentation/wiki/SkE/NGrams.

4 http://galaxy.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/

fsa.html

https://ske.fi.muni.cz/auth/corpora/
http://www.sketchengine.co.uk/documentation/wiki/SkE/NGrams
http://galaxy.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html
http://galaxy.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html


14 Zuzana Nevěřilová and Barbora Ulipová

3.2 Client-side Design

The client side provides a text area for writing and selectbox with suggestions.
Unlike touchscreens, the selectbox is controlled by up/down arrows and the tab
key for selecting the desired word. We reduced the number of suggestions to 6
since users do not usually find it productive to read more of them. A screentshot
is presented in Figure 1. The client side also trims spaces before punctuation.

Fig. 1: Screenshot of the basic client

We strongly benefit from asynchronous JavaScript (AJAX) in order to call
the server-side script after each key stroke. This procedure is quite demanding
on the server-side script performance.

3.3 Extension to custom-built model

Our next goal was to improve the system tailoring it to the individual users or
domains. This was done by allowing the user to upload a file with user specific
(or domain specific) texts and then adjusting the system so it suggests primarily
the n-grams taken from user files: we call these n-grams the custom-built model.

3.4 Discussion on the vocabulary size

Czech is a highly inflected language, thus it has much more word forms than
e.g. English. The size of the n-gram vocabulary has to be considerably bigger.
For example, [6] argue that German corpora have to be 4 times larger than
English ones in order to keep the same theoretical minimum error rate in speech
recognition. For Hungarian, the corpus size must be 20 times bigger compared
to an English corpus.
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From the czTenTen corpus, we extracted n-grams for n = 1, ..., 12. Table 1
shows the number of n-grams for respective n.

Table 1: Number of n-grams with respect to different n
n number of n-grams
1 8,312,152
2 68,217,654
3 38,781,821
4 22,163,068
5 8,554,953
6 2,798,732
7 849,500
8 267,789
9 100,753
10 50,674
11 31,152
12 21,140
total 150,149,388

3.5 Building custom language models

To create a file with user n-grams, we first tokenize the user file which is
expected to be in a plain text format. We use the unitok tool5. The corpus data
are already tokenized so they do not have to go through this process. To find
unigrams and their frequency distribution, we used a bash pipeline:

cat inputfilename | /corpora/programy/unitok.py -n | sort \
| uniq -c | sort -r -n | awk ’{print $2 ":" $1}’ > unigrams

This command will simply sum the number of occurrences of each word.

3.6 N-gram weighting

To find longer n-grams, we implemented a function which used the above
mentioned unitok tool for tokenization and functions from the python nltk
toolkit6 for creating the n-grams and counting the number of their occurrences.
Since we do not expect the user data to be very large, we decided to only
count n-grams of the length of 2 to 4 tokens. Longer n-grams are not likely to
occur more than once in a short text. Also, we did not want their frequency

5 https://www.sketchengine.co.uk/documentation/wiki/Website/

LanguageResourcesAndTools
6 http://www.nltk.org

https://www.sketchengine.co.uk/documentation/wiki/Website/LanguageResourcesAndTools
https://www.sketchengine.co.uk/documentation/wiki/Website/LanguageResourcesAndTools
http://www.nltk.org
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distribution to be the only criteria for sorting because longer n-grams are
much less frequent than short ones but at the same time they are much more
interesting for our purposes.

We decided to count the n-gram score according to the following formula:

Score = FrequencyDistribution× n4,

where n is the number of tokens in the n-gram. Then we sort the n-grams
according to this score.

User n-grams are stored in text files, the server-side script uses the sgrep
utility7 for binary search in the text files.

4 Evaluation

Users write the text in a text area and control the prediction via the up/down
arrows and the tab key. If they see the desired word in the selection box, they
choose it using the arrow keys and then select the word by the tab key. We eval-
uated the application on several texts measuring both the letter KSPC and the
real KSPC (see Section 2). Letter KSPC reflects only the performance of the lan-
guage model while real KSPC also reflects the input method implementation.
Corrections, deletions, and clipboard operations were not comprised in none of
the measures.

4.1 Experiment

We measured KPSC on four texts that are not present in the corpus: The average
letter KPSC was 0.64 and the real KSPC was 0.77.

Afterwards, we measured the KPSC according to a particular writing style.
We used two completely different custom-built models: contract templates and
Václav Havel’s speeches. From the former source, we obtained 20k unigrams
and 386k n-grams for n = 2, 3, 4. From the latter source, we obtained 41k
unigrams and over milion n-grams for n = 2, 3, 4.

We then typed in a paragraph from a mortgage contract (480 characters
without spaces), a contract of sale (362 characters) and a part of Václav
Havel’s speech (524 characters) and a paragraph from Václav Havel’s essay
(470 characters) with the use of the custom-built models and without them (so
the tool is only using data from the general corpus). The paragraphs are long
enough so the KSPC is not much influenced by a few out-of-vocabulary words.
The results are shown in Table 2.

5 Results and Observations

After uploading the user data, both letter KSPC and real KSPC improved
slightly. The measured KPSC shows that the tool is usable for writing arbitrary

7 http://sgrep.sourceforge.net/

http://sgrep.sourceforge.net/
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Table 2: Resulting KSPC on four texts
text type mortgage contract contract of sale H. speech H. essay
letter KSPC 0.63 0.55 0.68 0.71
letter KSPC with custom-
built model

0.62 0.54 0.67 0.70

real KSPC 0.77 0.64 0.81 0.84
real KSPC with custom-
built model

0.70 0.62 0.81 0.77

texts in Czech. Our system is comparable with other prediction systems, e.g.
WordTree [7] which reports KSPC = 0.71. Due to the n-gram resource – the web
corpus – it can contain non-standard n-grams, thus it is less suitable for spell
checking.

The tool is more successful with contracts than Václav Havel’s texts. Legal
texts have much more predictable sentence structure, many commonly used
phrases (resulting in n-grams with higher scores) and a vocabulary where there
are lot of words used very often and fewer words are used rarely. This is
common with NLP tools which are often more successful with expert domains
than general texts.

With Václav Havel’s texts the custom-built model improves the result as a
whole but sometimes it actually make the result worse. For example, without
custom-built model, after typing “já” (the pronoun I), the system suggests
“bych” (would) because the strongest n-gram starting with “já” is “já bych
chtěl” (I would like). With model built from Havel’s texts, the prediction system
suggests “se”, as Havel’s strongest n-gram is “já se domnívám” (I assume).
However, if we type only “D” without any custom-built model, the system
suggests “Dobrý” (Good) at the third place while model built from Havel’s texts,
it does not suggest “Dobrý” at all. Therefore, it will not help when a speech
starts with (very common greeting) “Dobrý den” (Hello but literally Good day).

The program often suggests a word with the right base but a wrong ending.
This is due to Czech being a highly inflected language. At the same time, the
sentence parts with obligatory agreements do not need to be close.

6 Conclusion and Future Work

We have built a prototypical system for predictive writing and evaluated it on
Czech. While predictive writing seems to be the domain of mobile devices,
we found several benefits of predictive writing arising from the reduction of
number of key strokes: typing speed, correct spelling, natural collocations.
These benefits can be arguable and have to be measured on real-world texts. We
extended the n-gram model calculated from a general corpus by user specific
or domain specific texts. We proved that in some domains, predictive writing
with the appropriate custom-built model can be even more effective.
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Predictive writing has many applications and potential users such as
motor impaired persons, users with dysgraphia, foreigners learning Czech,
and touchscreen users. For this reason, we plan to improve the system and to
measure its usefulness (expressed by not only the KSPC but also typing speed
and number of errors) on real-world texts.

For near future, we plan to clear the n-grams in order to exclude n-grams
with undoubtedly incorrect Czech and spelling errors. At the same time, we
expect the KSPC decrease when the system offers more than one next word.

Other improvements comprise shift from n-gram to grammar-based predic-
tion and learning from the user input.

Acknowledgements This work has been partly supported by the Masaryk
University within the project Čeština v jednotě synchronie a diachronie – 2014
(MUNI/A/0792/2013).
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One System to Solve Them All
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Abstract. People are daily confronted with hundreds of situations in
which they could use the knowledge of stylometry. In this paper, I pro-
pose a universal system to solve these situations using stylometry fea-
tures, machine learning techniques and nature language processing tools.
The proposed tool can help translation companies to recognize machine
translation falsely submitted as a work of a human expert; identify
school essays not written by the underwritten student; or cluster product
reviews by authors and merge user reviews written by one author using
multiple accounts.
All examples above use same techniques and procedures to solve the
problem, therefore it is preferred to merge algorithms and implementa-
tion of these tasks to a single framework.

Keywords: stylometry, machine learning

1 Introduction

People are daily confronted with hundreds of situations in which they could
use the knowledge of stylometry. I will mention several pressing problems:

Purchase of school essays during educational process: With the expansion of the
Internet in the majority of households, the number of specialized web pages
offering to order essays and diploma theses increased rapidly. If the submitted
work was published on the Internet, the plagiarism methods can detect a fraud.
Otherwise, stylometry techniques are needed to expose falsely signed works:
The style of previous author’s works is compared to the style of the submitted
work. If the style is different enough that it exceeds the limit defined for the
diversity of one author, the system will notify evaluators.

Registering using a false age or gender in dating advertisements; on discussion forums;
or in Internet chats: Deception detection is the task of automatically classifying a
text as being either truthful or deceptive according to the identity of author such
as gender or age. In online social network communities it is easy to provide a
false name, age, gender and location in order to hide a true identity, providing
criminals such as pedophiles with new possibilities to harm people. Checking
user profiles on the basis of text analysis can detect false profiles and flag them
for monitoring [6].

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 19–26, 2014. c○ NLP Consulting 2014

mailto:rygl@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2014.nlp-consulting.net/
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Machine translation submitted as human expert translation: Translation compa-
nies hire human experts (translators) to translate texts. For some of the less
frequented languages it is difficult to verify the quality of the translation, there-
fore human experts can be tempted to use machine translation tools to complete
their tasks automatically. Stylometry techniques can distinguish between auto-
matically translated text and the text translated by a human expert.

False product reviews: During the last five years, the volume of Internet advertis-
ing doubled in Czech Republic [11]. Internet shoppers are influenced by prod-
uct reviews. The share of user reviews increases at the expense of the share of
professional reviews. The number of products rises faster than is the capacity
of magazines aimed at user reviews. This situation leads to the fact that some
companies are guilty of unfair trade practices and creates fake product reviews:
positive ones to improve the rating of their goods, and negative ones to harm
their competitors [9]. We can fight false reviews by recovering true authorship
of reviews; cluster user accounts by their true author; and detect automatically
generated reviews.

2 Stylometry

Author’s style is defined as a set of measurable text features according to sty-
lostatisticians [8]. These features are called style markers. Word-length frequen-
cies were used as the first style markers to detect an authorship of documents.
T. C. Mendenhall discovered that word-length frequency distribution tends to
be consistent for one author and differs for different authors (1887, [5]).

Style markers can be divided into categories, which can be defined by
properties of texts that are used, or by tools needed to extract information.

Usually, following tool categories are used to implement stylometry tech-
niques (examples of Czech tools are given):

1. Text cleaning (boiler-plate removal, HTML removal, etc.)
2. Language detection
3. Encoding detection (Chared1)
4. Text tokenization
5. Morphology analysis (Majka [10])
6. Syntactic analysis (SET [4])
7. Semantic analysis (entity detection, abbrevation expansion, etc.)

The number of categories based on extracted information is still growing,
therefore only a few predominant examples are listed:

1. Wordclass n-grams
2. Morphology tags n-grams
3. Word-length and sentence-length distribution
4. Typography errors

1 http://nlp.fi.muni.cz/projects/chared/

http://nlp.fi.muni.cz/projects/chared/
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5. Punctuation usage
6. Subtrees from a tree generated by syntactic analysis

The quality and the utility of style markers depend on the type of problem.
Different document lengths and tasks require different style markers, therefore
it is recommended to experimentally select a subset of style markers and not to
use them all [7].

3 Machine learning

Machine learning techniques work with data instances. Each instance is an n-
tuple of features, each feature represents one style marker.

The instances are separated into two groups. Training group is labeled and
contains information about author, gender, age, etc., depending on the scenario.
Training instances are used to create a machine learning classifier. The classifier
is given unlabeled test instances and predicts labels. The features are usually
rational numbers, which are automatically normalized to a range ⟨0, 1⟩ or
⟨ − 1, 1⟩.

To solve the problems using stylometry techniques, two Support Vector
Machines methods are recommended [3]:

– SVM implementation LIBSVM [1]
– Linear SVM implementation LIBLINEAR [2]

The selected SVM based techniques have several parameters which should
be tuned for each data set. Grid search and other optimization techniques are
used to find the best parameters for learning data set.

Depending on what is used as a data instance, we can distinguish two
approaches 3.1 and 3.2.

3.1 One model per label approach

For each label (labels can be ages, genders, author names, types of translations),
one machine learning model is trained. Each model for a label L classifies
whether a given document should be given the label L. The n most probable
labels are selected for each document (n = 1 for a majority of tasks).

The advantage of this approach is that it supports tasks with multilabeled
instances (e.g. document written by more authors). The disadvantage is that it
requires training instances for each label, therefore this approach cannot predict
labels for test instances with unseen labels.

The data instance is an n-tuple of style markers of one document.

3.2 Similarity approach

Similarity approach is used to compare two documents and predict the similar-
ity between them. Given two documents A and B, style-marker n-tuples s(A)
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and s(B) are extracted. The inverse absolute difference of style-marker n-tuples
(similarity) is counted:

1− |s(A)[1]− s(B)[1]|, 1− |s(A)[2]− s(B)[2]|, . . . , 1− |s(A)[n]− s(B)[n]

where s(A)[i] is i-th item of s(A) and s(B)[j] is j-th item of s(B).
The data instance is a similarity n-tuple of two style markers. This approach

can compare whether two documents have the same label even if the label is
not present in training instances.

4 One system

Most of the previously mentioned techniques are common for algorithms
solving stylometric problems. Therefore, I proposed a system schema which
can be used to solve all tasks with minimal effort. The schema consists of
following parts (training a model):

1. Annotating (each doment is given a label)
2. Document processors (documents are cleaned and expanded to a collection

of extracted information)
(a) text cleaning (remove boiler-plae, HTML, . . . )
(b) language detection
(c) charset detection
(d) tokenization
(e) morphology analysis
(f) syntactic analysis
(g) semantic analysis (abbreviations, entities, . . . )

3. Style extraction (expanded documents are converted to feature n-tuples,
where n is the number of style markers)

4. Similarity extraction (if we want to solve a task using a similarity approach,
feature n tuples of selected document pairs are compared and similarity
n-tuples are counted)

5. Machine learning – training a model (each n-tuple has a label)
(a) feature selection (select the best combination of style markers)
(b) machine learning parameters selection
(c) model creation

The schema for classification consists of the following parts (see Figure 1):

1. Document processors (see a previous List)
2. Style extraction (expanded documents are converted to feature n-tuples,

where n is the number of style markers)
3. Similarity extraction (if we want to solve a task using thea similarity

approach, feature n tuples of selected document pairs are compared and
similarity n-tuples are counted

4. Machine learning classification (each n-tuple is given a label)
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Documents: ...Document 1 Document 2 Document 3

cleaning
(removing boiler-plate, HTML)

language detection
encoding detection

tokenization
morpohological analysis

syntactic analysis
semantic analysis

style marker n-tuple
extraction

Feature n-tuples: ...Style markers 1 Style markers 2 Style markers 3

Similarity
approach only:

...Similarity 1-2 Similarity 2-3 Similarity 1-3

feature normalization

classifier

Labels: ...Label 1 Label 2 Label 3

Fig. 1: System schema: document classification
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4.1 Authorship of school essays

Input: 2-tuples (author, document).

Style extraction: Select style markers based on genres of documents.

Machine learning: Train a model with two labels ([author’s name], other)
for each author. Author’s documents are used as instances with the label
[author’s name], documents of other authors have the label other.

Classification: For each author’s model, estimate a probability of each label.
Check whether document signed by author A has the label A with the probabil-
ity higher than probabilities of all other labels except the other label. If author’s
probability is lower than some probability of other author, notify evaluators.

4.2 False product reviews

Input: 2-tuples (author, document).

Style extraction: Select style markers suitable for short texts.

Similarity extraction: Compare each two documents and extract similarities
between them.

Machine learning: Train one model. Comparison of two documents of one
author are given a label same_authors, pairs of documents signed by different
authors are used as instances with a label different_authors.

Classification: Check whether pairs consisting of documents from two different
authors are labeled as same_authors. If more than one document pair of two
authors is classified with the same authorship, consider merging these authors.

4.3 Registering using a false age in dating advertisements

Input: 2-tuples (age, document).

Style extraction: Use all style markers.

Machine learning: Divide ages into several groups, each group is represented
by one label (e.g. gradeschooler, teen, young_adult). Train one model using
these labels.

Classification: Check whether the document is classified as the same label
as the document is annotated. If the label does not match, notify system
administrators.
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4.4 Machine translation submitted as human expert translation

Input: 2-tuples (source, document).

Style extraction: Select style markers based on genres of documents.

Machine learning: Train one model. Machine translation instances are labeled
as machine_translation, documents translated by human experts have the
human_translation label.

Classification: Check if the submitted translation is given the human_translation
label. If the label does not match, evaluate the translation by another human ex-
pert.

5 Conclusions and future work

I plan to implement a multilingual system according to the proposed schema.
The system will use the state of the art libraries for machine learning techniques
and text processing, and wide range of stylometric features. Once implemented,
all scenarios mentioned in this paper will be tested using this system and the
results will be published.

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT-Clarin project LM2010013.
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Abstract. In this paper, we describe and evaluate current improvements
to methods for enlarging translation memories. In comparison with the
previous results in 2013, we have achieved improvement in coverage by
almost 35 percentage points on the same test data. The basic subsegment
splitting of the translation pairs is done using Moses and (M)GIZA++
tools, which provide the subsegment translation probabilities. The ob-
tained phrases are then combined with subsegment combination tech-
niques and filtered by large target language models.
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language model

1 Introduction

Computer-aided translation (CAT) is becoming more and more popular—
with the state-of-the-art technologies such as subsegment leveraging, machine
translation, or automatic terminology extraction, the translation process is
faster and easier than ever before.

CAT systems depend on translation memories: manually built databases
of aligned source and target segments (phrases, sentences, paragraphs). They
can be considered as parallel corpora of very high-quality (since they are
prepared by professional translators) but of quite small size and coverage of
new documents.

We describe current improvements of the methods for expanding transla-
tion memories which have been described in the previous paper [1]. The goal
of these methods is to increase new document coverage of a translation mem-
ory preserving its high translational precision.

There is also a commercial aspect of this research: the coverage analyses
provided by CAT systems are usually used for estimating the amount of work
needed for translating a given document (i.e. the price of the translation work).
The higher number of segments which can be pre-translated automatically, the
lower is the price of the translation work. That is why the translation (and
localization) companies aim at the highest coverage of their resources.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 27–34, 2014. c○ NLP Consulting 2014

mailto:\protect \T1\textbraceleft xbaisa,xbusta1,hales\protect \T1\textbraceright @fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2014.nlp-consulting.net/


28 Vít Baisa, Josef Bušta, and Aleš Horák

TM DOCUMENT METHODS

input

TMexp

output

Fig. 1: Schema of the basic work flow for TMexp.

2 Previous and Related Work

In the previous paper [1], we have proposed several methods for enlarging
translation memories and provided an evaluation for one of them. In this paper,
we describe the improvements of the methods and evaluate all of them on both
the original data used in the previous paper and also on a new data, Directorate-
General for Translation or DGT1 [2] translation memory released recently by the
European Commission. For related work refer to [1].

3 Subsegment Processing Methods

In this section, we present the changes and improvements to the previous
paper [1] and a detailed description of the implemented techniques.

The input for our methods is a translation memory and a document. We
want to enlarge the TM (the expanded TM is denoted TMexp) to cover more
segments in the document and preserve the quality of the translations, see the
Figure 1.

3.1 Method A: Subsegment Generation

Subsegments and the corresponding translations are generated using Moses [3]
tool directly from the TM, no additional data is used. The word alignment is
based on MGIZA++ [4] (parallel version of GIZA++ [5]) and the default Moses
heuristic grow-diag-final.2 The next steps are phrase extraction and scoring [3].
The corresponding partially expanded TM is denoted as TMsub. The output
from subsegment generation has the following format:

Subsegment Translation Probabilities Alignment points
nejlepší uhlí best coal 0.158, 0.142, 0.158, 0.69 0-0 1-1

The probabilities are inverse phrase translation probability, inverse lexical weighting,
direct phrase translation probability and direct lexical weighting obtained directly
from the Moses procedures. These probabilities are used to select the best

1 https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-

memory

2 http://www.statmt.org/moses/?n=FactoredTraining.AlignWords

https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory
http://www.statmt.org/moses/?n=FactoredTraining.AlignWords
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Fig. 2: Word matrix for two aligned sentences / segments.

translations in case there are many translations for a subsegment. Alternative
translations for a subsegment are combined from different aligned pairs in the
TM. Typically, short subsegments have many translations.

The alignment points determine the word alignment between subsegment
and its translation, i.e. 0-0 1-1 means that the first word “nejlepší” from the
source language is translated to the first word in the translation “best” and
the second word “uhlí” to the second word “coal.” These points give us an
important information about the subsegment translation: 1) empty alignment,
2) one-to-many alignment, and 3) opposite orientation.

In Figure 2 the empty alignment is represented by an empty line or an empty
row, the one-to-many alignment by a sequence of adjacent squares in a row
or in a column and the opposite orientation by a sequence of neighbouring
squares on the secondary diagonal. The alignments are used to determine
correct positions in the subsegments translations.

3.2 Method B: Subsegment Combination

The subsegment translation pairs obtained by the method A are used as a
pool of candidate subsegments used in the next method to generate longer
subsegments. In an ideal case, to generate a new translation pair covering a
whole, originally uncovered, segment in the input document – so called 100 %
match.

Currently, the sub-methods join and substitute are proposed for subsegment
combinations, each of them in an overlapping and non-overlapping variant:

1. JOIN: new segments are built by concatenating two segments from TMsub,
denoted TMJ .
(a) JOINO: joined subsegments overlap in a segment from the document,

denoted TMOJ .
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Table 1: SUBSTITUTEO, example for Czech→ English
new subsegment Provozovatelé musí dodržovat zvláštní pravidla pro

výzkumné
its translation Operators shall comply with the special rules on research

from subsegments Provozovatelé musí vytvářet zvláštní pravidla pro
výzkumné |musí dodržovat zvláštní

their translations Operators shall create the special rules on research | shall
comply with the special

(b) JOINN : joined subsegments neighbour in a segment from the document,
denoted TMNJ .

2. SUBSTITUTE: new segments can be created by replacing a part of one
segment with another subsegment from TMsub, denoted TMS.
(a) SUBSTITUTEO: the gap in the first segment is covered with an overlap

with the second subsegment, see the example in Table 1, denoted TMOS.
(b) SUBSTITUTEN : the second subsegment is inserted into the gap in the first

segment, denoted TMNS.

During the subsegment non-overlapping combination, any two subsegments
are combined regardless the fluency and the context. That is why we need to
evaluate the quality of the combination. For the quality measurement, we have
trained a language model using KenLM [6] tool on first 50 million sentences
from enTenTen [7] with model order set to 5.

The translation quality of the SUBSTITUTE operation can be improved by
substituting a particular part-of-speech (noun, adjective, ...) for the same part-
of-speech or a noun phrase for a noun phrase.

Algorithm 1: JOIN subsegments
Data: Segment S from document; List I of indexes (i, j) of subsegments occurring

in S sorted in decreasing order by the difference of j− i
Result: R

1 while I ̸= ∅ do
2 (i, j)←− First(I);
3 I ←− I − (i, j);
4 T ←− ∅;
5 for (k, l) ∈ I do
6 if (k < i ∧ l + 1 ≥ i ∧ j > l) ∨ (i < k ∧ j + 1 ≥ k ∧ l > j) then
7 T ←− T + (Min (k, i),Max (l, j));
8 R←− R + (Min (k, i),Max (l, j));
9 if (Min (k, i),Max (l, j)) = (0,Length (S)) then

10 return R;
11 I ←− T + I;
12 return R;
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In [1], the operation JOIN was implemented just for non-overlapping sub-
segments and as a concatenation of any two subsegments. In this paper, we
present an improved Algorithm 1. The algorithm works with indexes which
represent the subsegment positions in the tokenized segment from the input
document. The processing starts with the biggest subsegment in the segment
and then tries to join it with other subsegments. If it succeeds, the new sub-
segment is appended to temporary list T. After all other subsegments are pro-
cessed, T is prepended to I and the algorithm starts with a new subsegment
created from the two longest subsegments. If it does not succeed, the next sub-
segment in the order is processed. The algorithm 1 prefers to join longer sub-
segments. In each iteration it generates new (longer) subsegments and it dis-
cards one processed subsegment. See Section 4 for the evaluation of this new
approach.

4 Evaluation

For the evaluation of the current implementation of the TM-expanding meth-
ods, we have used the same translation memory TMs and the same example
document Ds as in [1]. Both data files have been provided by one of the biggest
Czech translation companies.

Table 2: MemoQ analysis for TMs.
TM TMsub TMNS

Match Seg wrds chars % Seg wrds chars % Seg wrds chars %
100% 23 128 813 0.4 165 178 611 0.51 0 0 0 0

95–99% 45 185 1,130 0.5 193 245 1,578 0.7 20 43 273 0.12
85–94% 4 21 155 0.1 19 50 325 0.14 18 78 451 0.22
75–84% 42 208 1,305 0.6 96 310 1,888 0.88 129 436 2,677 1.24
50–74% 462 1,689 10,293 4.8 789 4,543 27,999 12.93 1681 12,522 75,108 35.65
≥ 75% 114 542 3403 1.6 473 783 4,402 2.23 167 557 3,401 1.58

any 576 2,231 13,696 6.4 1,262 5,326 32,401 15.16 1,848 13,079 78,509 37.23

TMOJ TMNJ TMall

Match Seg wrds chars % Seg wrds chars % Seg wrds chars %
100% 6 23 106 0.07 4 19 101 0.05 182 302 1360 0.86

95–99% 11 60 310 0.17 13 87 466 0.25 232 465 2,858 1.32
85–94% 5 33 217 0.09 17 149 892 0.42 41 221 1,382 0.63
75–84% 68 314 1,809 0.89 110 881 5,022 2.51 265 1,475 8,655 4.2
50–74% 1,153 7,667 45,641 21.83 1,354 11,997 70,730 34.15 1,507 15,324 92,158 43.62
≥ 75% 90 430 2,442 1.22 144 1,136 6,481 3.23 720 2,463 14,255 7.01

any 1,243 8,097 48,083 23.05 1,498 13,133 77,211 37.38 2,227 17,787 106,413 50.63
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Table 3: MemoQ analysis for DGT-TM.
TM TMsub TMNS

Match Seg wrds chars % Seg wrds chars % Seg wrds chars %
100% 31 59 639 0.03 276 457 2,666 0.25 58 260 953 0.45

95–99% 198 546 1,941 0.30 225 446 1,998 0.24 206 827 2,992 0.45
85–94% 43 169 986 0.09 208 971 4,205 0.53 94 492 2,187 0.27
75–84% 357 1,745 8,021 0.96 386 1,714 9,115 0.94 287 1,492 7,102 0.82
50–74% 2,580 20,778 126,273 11.37 2,907 22,736 141,526 12.45 3,348 29,549 182,667 16.18
≥ 75% 629 2,519 11,587 1.38 1,095 3,588 17,984 1.96 645 3,071 13,234 1.99

any 3,209 23,297 137,860 12.75 4,002 26,324 159,510 14.41 3,993 32,620 195,901 17.86

TMOJ TMNJ TMall

Match Seg wrds chars % Seg wrds chars % Seg wrds chars %
100% 38 187 764 0.10 29 161 683 0.09 358 838 4,172 0.46

95–99% 195 770 2,752 0.42 69 247 769 0.14 338 990 4,282 0.54
85–94% 124 695 3,198 0.38 203 1,107 4,892 0.61 133 666 3,750 0.36
75–84% 256 1,634 7,764 0.89 287 2,133 10,331 1.17 537 3,231 17,340 1.77
50–74% 3,220 32,325 200,667 17.70 3,673 47,715 298,031 26.12 4,183 53,791 343,699 29.45
≥ 75% 613 3,286 14,478 1.79 588 3,648 16,675 2.01 1,366 5,725 29,544 3.13

any 3,833 35,611 215,145 19.49 4,261 51,363 314,706 28.13 5,549 59,516 373,243 32.58

The evaluation results have been obtained directly from the pre-translation
analysis of the MemoQ3 system. The statistics express how many segments
from the document Ds can be translated automatically using the TM-expanding
methods. The automatic translation is done on the segment level and even on
lower levels of subsegments. The partial matches are expressed as the match
percentages in the table. The 100% match corresponds to the situation when
a whole segment from Ds can be translated using a segment from the respective
translation memory (either the original one or a memory obtained by each
particular sub-method). Translations of shorter parts of the segment are then
matches lower than 100%.

The columns in Tables 2 and 3 are: Match: type of match between TM
and Ds, Seg: number of segments identified in Ds, wrds: number of source
words which are covered (translatable) by TM, chars: number of source
characters, and percent sign: percentage of coverage for the type of match in
the first column. In the evaluation process, we have first tested the translation
on a document with 4,563 segments (35,142 words and 211,407 characters), see
Table 2.

For an independent comparison, we also present our results for DGT
translation memory [2]. For the evaluation using DGT we have used 330,626
pairs from 2014 release and evaluated it on 10,000 randomly chosen segments
from the same release. Duplicate pairs were removed before evaluation. See
Table 3 for the results.

3 http://kilgray.com/products/memoq

http://kilgray.com/products/memoq
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Table 4: Analysis of dependence between subsegment length and the coverage
of the document.

TMs DGT-MT
Length TMsub TMOJ TMNJ TMNS TMall TMsub TMOJ TMNJ TMNS TMall

≥ 1 85% 11% 15% 25% 85% 95% 57% 71% 65% 95%
≥ 2 35% 11% 15% 25% 44% 78% 57% 71% 65% 85%
≥ 3 7% 11% 15% 25% 32% 53% 57% 71% 65% 82%
≥ 4 1% 5% 15% 9% 16% 35% 52% 71% 53% 74%
≥ 5 0% 2% 8% 2% 7% 23% 45% 66% 38% 65%

Table 5: Translation quality (METEOR score) for 100% matches.
TMs DGT-MT

feature TMsub TMOJ TMNJ TMNS TMall TMsub TMOJ TMNJ TMNS TMall

precision 0.60 0.63 0.70 0.66 0.61 0.76 0.93 0.91 0.81 0.80
recall 0.67 0.74 0.74 0.71 0.68 0.78 0.86 0.88 0.85 0.81

f1 0.64 0.68 0.72 0.68 0.64 0.77 0.89 0.89 0.83 0.81
METEOR score 0.31 0.37 0.38 0.38 0.31 0.40 0.50 0.51 0.45 0.43

We have also counted the coverage of the document considering the length
of subsegments, see Table 4. Notice that longer subsegments are created by
subsegment combination.

The METEOR [8] metric was used to evaluate quality (precision) of the pro-
posed translated segments. We provide statistics for all implemented methods
on both test data sets, see Table 5. The METEOR evaluation metric has been
proposed to evaluate MT systems, therefore it assumes that we have fully trans-
lated segments (pairs). That is why we are evaluating only 100% matches since
it is not straightforward to interpret METEOR scores for partially translated
candidate sentences.

We have analysed the problematic cases regarding the precision. The most
common error is when subsegments are combined in the order in which they
occur in the segment assuming the same text sequential order in the target
language, see the Table 6. We assume, that such errors will be less frequent
with a larger input translation memory, which will offers higher ration of the
overlapped (contextual) segments.

Table 6: Non-overlapping JOIN error example Czech→ English.
segment Prémie na bramborový škrob

reference Potato starch premium
new subsegment Prémie na bramborový škrob

its translation Premiums potato starch
from subsegments Prémie na | bramborový škrob

their translations Premiums | potato starch
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5 Conclusions

We have shown that the originally proposed methods can be further improved
and provided the evaluation which shows that the coverage of all matches
has been increased by 34.5 percentage points (from 16.15% reported in [1]
to 50.63%). As for the 100% matches which are the most important, the test
results show an increase of 0.5 percentage points comparing the original TM
and combination of both JOIN methods (from 0.4% reported earlier to 0.86%)
and the coverage of > 75% matches increased by 5.4% (from 1.6% to 7%).

The translational quality of the resulting new segments is kept at the high
level as is shown by the METEOR score up to 0.51 for the evaluation with
the translation memory by Directorate-General for Translation (DGT) of the
European Commission.

Acknowledgements The work has been partly supported by the OP VaVpI
project No CZ.1.05/3.1.00/10.0216.
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Abstract.
This paper is concerned with searching large text corpora – electronic col-
lections of texts. Often these are subject to queries specified by means of
regular expressions. Such queries go beyond a simple keyword search
that can be quickly evaluated using an inverted index, usually they are
rather processed by third-party regular expression libraries and take sig-
nificantly more time to evaluate. In this paper we present an index-based
approach for optimization of regular expression evaluation that we call
n-gram prefetching. It is based on the assumption that most regular expres-
sion queries on text corpora contain at least some fixed string portions
representing clues that can be used for developing heuristics that would
prune the number of potentially matching strings. The presented work
has been designed and implemented within the Manatee corpus man-
agement system. We show that the proposed approach can significantly
speed up regular expression processing by providing evaluation on a test
set of queries executed on a number of billion-word text corpora.

Keywords: text corpus, regular expression, Manatee

1 Introduction

Text corpora represent primary data resource for testing hypotheses, providing
evidence and building large scale statistical models used in various natural
language processing applications such as part-of-speech tagging, parsing or
machine translation.

Special database management systems (in this case corpus management
systems) devised for indexing and querying large text corpora have been de-
veloped to satisfy user needs in terms of complexity of queries and related re-
sponse time, such as [1,2]. These corpus management systems usually leverage
the idea of inverted index (inverted text) [3] to provide fast access to all occur-
rences of a given word (or another attribute like lemma or tag depending on
the type of annotation) in the corpus.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
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In many cases users formulate the queries not in the form of fixed string
expressions but as regular expressions. Clearly this represents a serious chal-
lenge for the corpus management systems as the first step necessary to answer
such queries lies in evaluating the regular expression against the relevant lex-
icon used in the corpus so as to be able to retrieve matching strings from the
indices. Usually, a third-party regular expression library is used for the actual
matching, often providing expressive power going way beyond what regular
expression offer as a classical computational model.

In this paper we present an optimization of regular expression evaluation
that we call n-gram prefetching. The approach has been implemented within
the Manatee corpus management system [4] and exploits the PCRE regular
expression library [5], however we claim that it is suitable for any inverted-
index-based corpus management system and it is in no way dependent on any
particular regular expression library.

The structure of this papers is as follows: we first provide a brief overview
of the Manatee corpus management system and its overall indexing machinery,
then we present the optimization approach in detail and finally we provide
and evaluation on a number of billion word corpora showing a up to 100-times
speedup.

2 Manatee

Manatee is a state-of-the-art corpus management system providing facilities
for efficient indexing (compiling) and searching billion-word-sized corpora
[6]. Querying corpora indexed by Manatee is done using the Corpus Query
Language (CQL, [7]). From a formal perspective a corpus in manatee consists
of text data (called tokens or positions, each of which may be associated with
a number of attributes such as word, tag or lemma, further referred to as
positional attributes) and text metadata (called structures, each of which is
denoting a span in the corpus such as a document, paragraph or sentence, and
may be associated with arbitrary number of structure attributes, denoting e.g.
the author of a document, date of creation etc.).

Every positional or structural attribute possesses following basic index
structures:

– attribute lexicon providing efficient string↔ID mapping. Each unique
attribute string value is assigned a unique numeric ID which is further used
in all indices and for processing CQL queries,

– attribute inverted (reversed) index providing sequential access to a sorted
list of occurrences (corpus positions) of a given attribute ID,

– attribute text storing the actual text of this corpus attribute, i.e. a sequence
of attribute IDs in the order of occurrence in the corpus.

On a very abstract level evaluating a CQL query consists of mapping
attribute strings given in the query to their IDs (using the lexicon index),
retrieving the relevant positions from the inverted index, combining them
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according to the given CQL operators and displaying the results (e.g. in the
form of a concordance). In the simplest case, considering a query looking for
all occurrences of a single word in corpus like [word="someword"], one yields
the ID n of someword from the lexicon and then retrieves the sorted list of
positions for n from the inverted index. Further CQL operations always rely
on processing sorted streams (of corpus positions or attribute IDs).

In the case attribute constraints are given as regular expressions, the
straightforward string-to-number mapping using the lexicon is not possible.
First one needs to find out which attribute values are matching the given
regular expression (by scanning the whole lexicon), then map each of the values
to the respective ID and merge all the related position streams retrieved from
the inverted index. Since all the streams and results must be sorted by design,
before the matching has finished no results are available to the user. This
exhibits a serious issue for large (i.e. billion-word-sized corpora) corpora where
the lexicon size is often reaching tens of millions of values and hence the time
taken to evaluate the regular expressions across the whole lexicon represents
a significant slow down of query evaluation, and especially of retrieving first n
results.

Two basic optimization have already been in place to tackle this problem:

– any string optimization: a regular expression matching ^(\.\*)+$ was
omitted as it obviously must match the whole lexicon,

– prefix optimization: since the lexicon provides an index of attributes ID
sorted alphabetically by the corresponding string values (representing one
of the possible implementations of string↔ID mapping based on a simple
binary search, see [8] for comparison), all regular expressions containing
a fixed-string prefix like re.* or mis.*ing make it possible to shrink the set
of possible matching strings by selecting the range of IDs with the given
prefix (here re and mis, respectively).

3 n-gram prefetching

In this paper we describe a new optimization approach that we call n-gram
prefetching. It is based on the assumption that most user queries exploiting
regular expressions still contain some fixed-string portions (because they are
linguistically motivated). While queries like ^.{0,3}$ are of course possible,
they are very rare. To verify this hypothesis we have inspected a set of 128,406
queries which the users of Sketch Engine (a web service exploiting Manatee,
see [9]) have issued to that system over the period from June to September
2014. Only 12 of them did not contain any fixed-string portions, moreover 6 of
these 12 were ^.*$ and got optimized as well.

The idea of n-gram prefetching consists (on compile time) in indexing all
character uni-, bi- and trigrams of every string attribute value and (on run
time) in extracting such n-grams from the regular expressions and using them
to constrain the number of possibly matching strings from whole lexicon to
a much smaller set of IDs.
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3.1 n-gram indexing

For indexing of the character n-grams we leverage the idea of dynamic attributes
in Manatee. A positional or structural attribute in Manatee can be a so called
dynamic attribute in which case such an attribute is automatically derived from
another existing (regular or dynamic) attribute. Each dynamic attribute is
assigned a dynamic function which takes the source attribute string as input
(and optionally other parameters as well) and returns the new (dynamic)
attribute value. Manatee contains a predefined set of dynamic functions which
mostly focus on simple string manipulations 1 (such as getting a prefix or suffix
of a string or its lowercase variant) and users can supply their own dynamic
functions as well (in the form of Linux plugins – dynamically linked C/C++
libraries). The main benefits of a dynamic attribute are:

– space savings in source data: no need to make it part of the input vertical
text

– space savings in indexing: a dynamic attribute has only the lexicon and
inverted index, but no text index. The inverted index stores for each
dynamic attribute ID a sorted list of source attribute IDs which map to this
dynamic attribute ID (instead of storing corpus positions).

– very limited runtime overhead: depending on the type of operations, the
overhead (slowdown) of using a dynamic attribute instead of a regular one
is very small. Optionally an index providing mappings of source attribute
ID to dynamic attribute ID is compiled as well, in which case the dynamic
functions do not need to be executed at runtime at all (except where it is
necessary to convert input user query, e.g. in case of lowercasing).

Each lexicon item (string) is processed generating all occurring uni-, bi- and
trigrams as shown in Figure 1 and storing the n-gram values as a dynamic
attribute of the source attribute.

classical -> c|l|a|s|s|i|c|a|l

cl|la|as|ss|si|ic|ca|al

cla|las|ass|ssi|sic|ica|cal

Fig. 1: Uni-, bi- and trigram string generation.

The resulting dynamic attribute contains a lexicon with all the n-grams
found in the source attribute and provides fast access to all source attribute
IDs containing a given n-gram. We prepend the caret sign (^) and append the
dollar sign ($) to each string so that we generate specific n-grams occurring at
beginnings and ends of words.

1 See https://www.sketchengine.co.uk/documentation/wiki/SkE/Config/

DynamicAttributes.

https://www.sketchengine.co.uk/documentation/wiki/SkE/Config/DynamicAttributes
https://www.sketchengine.co.uk/documentation/wiki/SkE/Config/DynamicAttributes
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Table 1: Comparison of original and n-gram lexicon sizes
corpus language size

×109
attribute lexicon size n-gram

lexicon size

czTenTen12 Czech 5.126
word 18,978,703 522,745

lemma 14,151,454 506,580
tag 12,061 1,702

enTenTen12

English

12.968
word 27,894,538 1,880,911

lemma 26,426,200 1,880,808
tag 60 260

enClueWeb09 82.581
word 115,820,931 2,350,697

lemma 110,606,268 2,296,072
tag 60 260

jpTenTen11 Japanese 10.322
word 13,844,200 6,353,186

lemma 13,303,479 3,766,160
tag 53 297

3.2 n-gram matching

On runtime we parse the given regular expression and extract all occurring
fixed-string uni-, bi- and trigrams (preferring longer n-gram where available
and combining strings longer than 3 characters into a set of trigrams by the
logical AND operator in CQL). Since regular expression as such can be quite
complicated we exploit the ANTLR3 parser generator [10] for processing the
regular expressions. We have chosen ANTLR3 because it has already been used
within Manatee (for CQL and corpus configuration files parsing) and it has very
powerful grammar writing formalism. The ANTLR3 lexer and parser grammar
is provided in Annex 1. The output of the ANTLR3 lexing and parsing is an
abstract syntax tree (AST) that is further subject to parsing by ANTLR3 using
a so called tree walker which directly executes programming code according to
the parsed AST.

The regular expression parsing grammar is based on the following princi-
ples:

– it recognizes separately regular characters and metacharacters (except for
^ and $ which are intentionally indexed as part of the n-grams as explained
above), because metacharacters must not be included into the n-grams
search and hence represent a separator between n-grams,

– it recognizes character classes (enclosed in [ and ] brackets) which must be
kept as a single token as they represent a single character position,

– it recognizes escaped sequences so that they can be handled correctly
(possibly de-escaped),

– it recognizes repetitions which must be either entirely omitted (in case zero
number of repetitions is allowed and hence the respective string portion
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is entirely optional) or if at least one occurrence is obligatory, the operand
character is duplicated and forms a suffix of previous n-grams and prefix
of next n-gram. E.g. abc+de gets expanded into two n-grams abc and cde
since every matching string must contain these.

Fig. 2: Sample abstract syntax tree for the input query .abc.*de+f. Both . and
.* substrings become a separator, while e+ substring is recognized so as to
search for de and ef.

Two sample AST’s are provided in Figures 2 and 3. The tree walking parser
looks up the found n-grams (in this sample abc, de and ef and combines the
related source attribute IDs using the logical AND operator into a single stream
of IDs that represent possibly matchings strings. Only these IDs are then subject
to evaluation of the regular expression instead of the full lexicon. An overview
of the whole dataflow is presented in Figure 4.

Fig. 3: Sample abstract syntax tree for the input query (alpha(b|c).*|d*ef+g)
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The lexicon lookup for particular n-grams is either a direct mapping of
an n-gram to ID using the dynamic attribute’s lexicon, or in case of n-grams
containing regular expression character class again an evaluation of a regular
expression – however on a much smaller lexicon. In Table 1 we provide
a comparison of original and n-gram lexicon sizes of various corpus and
attribute combinations showing that the n-gram lexicon is usually by orders
of magnitude smaller. It is obvious that for attributes with very small lexicons
(such as tags based on atomic tagsets), the optimization is not worth doing and
may even slow down the processing (as in the case of English and Japanese
tags), therefore in the current implementation the n-gram indices are being
compiled only for attributes with lexicons exceeding 10,000 items.

Fig. 4: Overview of the evaluation workflow using the n-gram prefetching
optimization for input query (alpha(b|c).*|d*ef+g)
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4 Evaluation

The optimization has been evaluated on a number of regular expressions
executed against various corpora under the following conditions:

– a single evaluation thread running on an Intel(R) Xeon(R) CPU E5506
@2.13GHz,

– hot cache – the best time of three consecutive runs was counted,
– we have measured the time to retrieve first 20 hits – this includes the regular

expression evaluation plus a number of other operations on the resulting
positions stream but it is more representative from the user perspective (the
processing within Sketch Engine is asynchronous and as soon as first 20 hits
are available they are displayed to users),

– we provide the number of regular expression evaluations (calls to the PCRE
matching function) with and without the optimization.

It follows from the evaluation that the speedup ranges from rather negligible
1.12 to enormous 100-times and the speedup ratio depends on a number of
circumstances:

– obviously the larger the lexicon size of the source attribute, the more
speedup can be achieved, and the evaluation shows that the additional
indexing pays off only in cases where the lexicon size exceeds about 10,000
items

– for very small lexicons (e.g. in the case of the tag attribute in English corpora
following the Penn Treebank tagset with only 60 atomic tags), the n-gram
prefetching is not very beneficial as it enlarges the lexicon size,

– the n-gram prefetching is beneficial even in cases where the prefix opti-
mization has already been previously in operation which is important since
these two optimizations cannot be combined,2

– not surprisingly the n-gram prefetching is most beneficial for regular
expressions containing rare n-grams (e.g. strč in Czech) but even for
frequent n-grams (like ten in English) the speedup is usually around 20,

– even where the optimization itself involves regular expression evaluation
(character class matching as in [sz]p.*), the speedup is significant and
present even in comparison with prefix optimization (as in pr[oe].*).

5 Technical Notes

For creating the n-gram optimization index, there is a new tool included in
Manatee called mkregexattr with a straightforward usage:

mkregexattr <CORPUS> <ATTRIBUTE>

2 The prefix optimization results – by its nature – in a list of IDs sorted alphabetically,
not numerically, and hence cannot be as such subject to any AND/OR stream
operations.
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Table 2: Evaluation of n-gram prefetching optimization. #RE denotes the
number of regular expression matching function executions without and with
n-gram prefetching, time is the evaluation time to acquire first 20 hits in
seconds, S denotes the achieved speedup.

corpus query #RE w/o #RE w/ time
w/o

time
w/

S

czTenTen12

[word=".*ější"] 18,978,703 41,426 10.030 0.341 29.4
[lemma=".*strč.*"] 14,151,454 888 6.601 0.066 100.0
[tag="k1.*c4.*"] 1,357 251 0.058 0.049 1.2
[word="[sz]p.*"] 18,978,703 115,347 10.023 0.698 14.4

enTenTen12

[word=".*ing"] 27,894,538 913,004 21.931 2.768 7.9
[lemma=".*ten.*"] 26,426,200 195,758 22.163 1.218 18.2
[word="pre.*ed"] 80,054 7,553 0.294 0.178 1.7
[word="pr[oe].*"] 251,924 198,297 1.329 0.920 1.4
[word=".*[dt]"] 27,894,538 3,466,379 41.100 8.538 4.8
[tag="N.*"] 60 5 0.056 0.048 1.2

jpTenTen11

[word=".*ち.*"] 13,844,200 30,160 8.182 0.364 22.4
[lemma=".*ア.*ス"] 13,303,479 69,228 8.388 0.450 18.6
[word="ンテ.*"] 17,078 17,077 0.199 0.178 1.12

The tool is part of Manatee version 2.111 and since this version, it is called
automatically by encodevert at the end of corpus compilation for each attribute
whose lexicon size exceeds 10,000 items.

6 Conclusions and Future Work

In this paper we have presented n-gram prefetching – an optimization ap-
proach for regular expression evaluation suitable for any corpus management
system based on inverted indices and independent of any third-party regu-
lar expression library. We have shown that this optimization can significantly
speedup user queries consisting of regular expressions. The idea has been
practically implemented within the Manatee corpus management system used
within the Sketch Engine corpus system and is part of the GPL-licensed part of
Manatee available also within the open source NoSketch Engine suite3.

In the future there might be a number of further optimizations that could
be explored, starting with extending the character class recognition support to
escape sequences like \w, \d etc., or dividing the n-gram lexicon into separate
ones for uni-, bi-, and trigrams. A different kind of optimization may also lie in
trying different regular expression library than PCRE or enabling PCRE just-in-
time (JIT) features that are currently not in use – however such a contribution

3 http://nlp.fi.muni.cz/trac/noske

http://nlp.fi.muni.cz/trac/noske
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is hard to evaluate as it very much depends on particular types of regular
expressions and with regard to them the speedup might be fairly unstable.

Acknowledgements This work has been partly supported by the Ministry of Educa-
tion of CR within the LINDAT-Clarin project LM2010013.
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Annex 1: ANTLR3 lexer and parser grammar for regular
expressions

LPAREN: ’(’;

RPAREN: ’)’;

LBRACKET: ’[’;

RBRACKET: ’]’;

LBRACE: ’{’;

RBRACE: ’}’;

BINOR: ’|’;

STAR: ’*’;

PLUS: ’+’;

QUEST: ’?’;

DOT: ’.’;

ZEROANDMORE: ’{0,}’ | ’{0,’ (’0’..’9’)+ ’}’;

ONEANDMORE: ’{1,}’ | ’{1,’ (’0’..’9’)+ ’}’;

ESC: ’\\’ (STAR | PLUS | QUEST | LBRACE | RBRACE | LBRACKET | RBRACKET

| LPAREN | RPAREN | DOT | BINOR | ’\\’ | ’^’ | ’$’

);

BACKREF: ’\\’ (’0’..’9’)+;

SPECIAL: ’\\’ .;

NOMETA: ~(STAR | PLUS | QUEST | LBRACE | RBRACE | LBRACKET | RBRACKET

| LPAREN | RPAREN | DOT | BINOR | ’\uFFFF’

);

ENUM: LBRACKET CHARCLASS+ RBRACKET;

fragment CHARCLASS: ( (NOMETA|DOT) ’-’ (NOMETA|DOT)

| ALNUM | ALPHA | BLANK | CNTRL | DIGIT | GRAPH | LOWER

| PRINT | PUNCT | SPACE | UPPER | XDIGIT

| (NOMETA|DOT)

);

regex

: regalt (BINOR^ regalt)* EOF!

;

regalt

: regpart+ -> ^(AND regpart+)

;

regpart

: regterm

( repet_one -> ^(ONE regterm)

| repet_zero -> SEPARATOR

| -> regterm

)

;

regterm

:
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(

LPAREN regalt (

(BINOR regalt)+ -> ^(BINOR regalt regalt)

| -> regalt

) RPAREN

| ENUM -> ENUM

| re_str -> re_str

)

;

re_str

: (DOT|BACKREF|SPECIAL) -> SEPARATOR

| NOMETA -> NOMETA

| ESC -> ESC

;

repet_one

: PLUS -> PLUS

| ONEANDMORE -> ONEANDMORE

;

repet_zero

: QUEST -> QUEST

| STAR -> STAR

| ZEROANDMORE -> ZEROANDMORE

;
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1 Introduction

Modus questions (MQs) are interpreted as being question constructions ap-
pealing to the intentions of the addressee – their opinion, knowledge, evalu-
ation or explanation. In this sense they are paramount for assimilation of the
world of the subjective (the so-called theory of mind) [1]. Propositional atti-
tudes and proposition of modus were studied in many works (see for example
[2,3,4,5]). The scope of our research is limited to the analysis of models describ-
ing modus questions in Russian texts, particularly the quantitative properties
of these types of questions in dialogues and the characteristics of the reactions
(replies) given.

Prototypical MQs are represented by constructions containing explicit
modus – modus frame3: e.g.

1. Как ты думаешь (вы думаете) / полагаешь (вы полагаете) / считаешь
(вы считаете). . . ? ‘What/How do you: SG or PL think / suppose etc. ?’;

2. Ты думаешь (вы думаете) / полагаешь (вы полагаете) / считаешь (вы
считаете), что. . . ? ‘Do you: SG or PL think / suppose etc. that. . . ?’;

3 We follow Bally’s differentiation between modus and dictum [6].

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 49–55, 2014. c○ NLP Consulting 2014
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3. Почему (отчего) ты так думаешь (вы думаете) / полагаешь (вы
полагаете) / считаешь (вы считаете). . . ? ‘Why do you: SG or PL think
/ suppose etc. that. . . ?’.

Within dialogic units (or discourse sequences) MQs can occupy not only an
initiative position (see above 1 – 3), but also a reactive one: e.g.

4. – Да что же ты, не можешь стукнуть кулаком по столу? – Почему не
могу? 4a. Ты думаешь, отчего у меня этот синяк под глазом? (RNC)
‘What are you, you cannot bang your fist on the table? Why cannot I? You
think, why I have this black eye?’.

The size of modus, means of its expression and types of frame pattern vary
extensively in utterances. For example, a completely verbalized modus can be
the main predicative part of a compound sentence with an explanatory close
(4a).

Incomplete (reduced) modus frames are often presented by parenthesis:

5. Что, по-вашему, это может изменить <. . . >? (RN) ‘What, in your opin-
ion, this can change <. . . >?’.

Being incorporated in the dictum, modus complicates a simple sentence
with an analytic (namely, compound nominal) predicate:

6. – Неужели вы его, правда, считаете величайшим? — спросил меня тот,
кого мы в нашем рассказе условно называем Петровым. <. . . > (RNC)
‘Do you have him, however, considered the greatest? — Asked me the one
whom we in our story conventionally call Petrov. <. . . >’

2 Materials and Methods

The research was carried out on corpora of the Russian language (compiled
by S. Sharoff): 1) a subset of the Russian National Corpus (RNC, 116 million
tokens) and 2) a Newspaper Corpus (RN, 70 million tokens) [7]. For the
comparative analysis we used data from the Russian National Corpus [8].

Lexico-syntactic models [9] can be used for describing patterns involving
lemmas or word forms, part-of-speech tags, characters, and other attributes in
an annotated corpus. While writing lexico-syntactic models we used regular
expressions and query language IMS Corpus Workbench.

The search of the system is based on morphological annotation combined
with lemmata and word forms. For example, the pattern [lemma="как"]
[]{0,5} [word="считаешь" | word="считаете"] []{0,15} [lemma="?"]
describes constructions with the interrogative-relative pronoun как (‘how’) and
verb считать (‘consider/think’) in both 2SG or PL forms, with the distance
between them being up to 5 words: cf. как ты считаешь, . . . ‘how/what do
you consider. . . ’, как ты все-таки считаешь, . . . ‘how do you ever consider. . . ’,
как же ты все-таки считаешь, . . . ‘how do you ever still consider. . . ’.
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The restriction [ ]{0,15} means that there are up to 15 words between
считаешь (считаете) ‘you consider’ and the end of the sentence (a question
mark).

The above-discussed models underlying modus questions make up about
1.5% of the total number of question sentences (strictly speaking, words before
a question mark) in the Russian National Corpus.

The whole range of modus questions was restricted to the most characteris-
tic models – constructions that include modus frames of mental semantics with
the prototypical intentional predicates (полагать ‘suppose’, считать ‘consider’,
думать ‘think’) in the second person singular and plural forms inherent to the
Russian replication.

3 Analysis Results

The constructions with mental predicates считать ‘consider’ (считаешь /
считаете?) and думать ‘think’ (думаешь / думаете?) prove to be the most
commonly used in the given corpora (see table 1).

In both corpora MQs with verbs in plural form are very frequent, prevailing
in RN (about 90%). This fact could be due to the specifics of the corpus, i.e. a
high number of interviews (in Russian the polite form is identical to the 2PL
one).

The usage of the pronouns ты ‘you’: 2SG and вы ‘you’: 2PL being non-
obligatory, nevertheless dominates in both corpora. In RNC there are 127
examples of constructions Вы (ты) полагаете (полагаешь). . . ? ‘Do you: 2SG
or 2PL suppose. . . ?’ and only 38 cases where the pronoun is omitted4, while in
RN there are 65 MQs with pronouns and only 5 sentences without them:

7. <. . . >Полагаете, они вас услышали? — Думаю, что нет, к сожалению
(RN). ‘[Do you] suppose, they heard you? — I think not, unfortunately.’

The search within sentence boundaries can produce some difficulties be-
cause a punctuation mark is viewed as a token and has its own tag. Imposing
restrictions for search within certain boundaries (e.g. <s> tags for a sentence)
can be seen as a solution in this case.

The description of four modus models of question extracted from the
corpus data are given below: КАК-model ‘HOW-model’, НЕУЖЕЛИ-model
‘REALLY-model’, ПОЧЕМУ-model ‘WHY-model’ and its version ОТЧЕГО-
model ‘WHY-model’.

3.1 КАК (считаешь / думаешь / полагаешь)-model

The pattern identifying the model in a corpus can be written in the following
form: [lemma="как"] []{0,5} [word="считаешь" | word="считаете"]
[]{0,15} [lemma="\?"].

4 Russian language belongs to the so-called pro-drop languages.
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Table 1: Modus questions in corpora
№ Модель RN RNC
1 как полагаешь / полагаете . . . ? 35 65
2 как думаешь / думаете . . . ? 445 939
3 как считаешь / считаете . . . ? 420 374
4 думаешь / думаете . . . ? >987 >997
5 полагаешь / полагаете . . . ? 70 165
6 считаешь / считаете . . . ? >993 >997
7 почему . . . полагаешь / полагаете . . . ? 3 6
8 почему . . . думаешь / думаете . . . ? 15 177
9 почему . . . считаешь / считаете . . . ? 36 63

10 неужели . . . полагаешь / полагаете . . . ? 0 9
11 неужели . . . думаешь / думаете . . . ? 9 132
12 неужели . . . считаешь / считаете . . . ? 2 19
13 отчего . . . полагаешь / полагаете . . . ? 0 1
14 отчего . . . думаешь / думаете . . . ? 0 3
15 отчего . . . считаешь / считаете . . . ? 0 0

An interrogative construction in the form of a composite sentence turns out
to be the most typical for the КАК-model.

One can distinguish between several kinds of reply for YES /NO-questions
based on a partial repetition of either the dictum part of the utterance or its
modus part combined with relatives (да ‘yes’, нет ‘no’ etc.). Requests to agree or
disagree with the previous information, to clarify it or to make an assumption
can be found in the semantics of the reactions. See:

(a) repetition of the dictum (predicate):

8. – Как ты думаешь, нужен будет нам еще Пегий пес или нет? – Нет,
не нужен, – опять же совершенно уверенно отвечал Кириск (RNC).
‘Do you think we still need a Spotted Dog or not? – No, it is not needed
– replied Kirisk, again, quite confidently.’

(b) repetition of the modus (also with negative particle не ‘not’):
9. – Как вы думаете, закон об ограничении пивной рекламы Госдума

поддержит? — Думаю, да (RNC). ‘Do you think the law limiting beer
advertising will be supported by the State Duma? – I think so.’

(c) repetition of parts of the modus and dictum:
10. – Как Вы считаете, поднимут «Курск» в этом году или нет? –

Считаю, что поднимут (RN). ‘Do you think [they] will raise the ‘Kursk’
this year or not? – I believe that [they] will raise it.’

(d) avoidance of an answer, clarifying or counter-questions:
11. – А вы, Таня, как считаете? – Мне-то какое дело? – дернула Таня

плечиком (RNC). ‘And you, Tanya, what do you think? – What do I
care? – Tanya answered with a shrug of her shoulders.’
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Replies to WH-questions are quite similar to the previous ones containing the
requested information (dictum) that can be presented by a frame repeating a
mental predicate:

12. – Срок... Как сам думаешь? (= какой срок?) – Думаю, неделя (RNC).
‘The term ... How long do you, yourself, think? (= How long?) – I think, a
week.’

3.2 НЕУЖЕЛИ (считаешь / думаешь / полагаешь)-model

The present model can be seen as a modal complicated variant of the КАК-
model and is more frequent in RNC compared to RN (160 vs. 11 examples).
The pattern is as follows: [lemma="неужели"] []{0,5} [word="считаешь" |
word="считаете"] []{0,15} [lemma="\?"].

This question is represented by both complex and simple constructions (the
latter is more typical for the predicates полагать and считать).

The replies include the following items:

(a) repetition of the dictum or its fragments:
13. – Неужели думаешь, что игре удастся избежать политизации,

реваншистского акцента? <. . . >. — Игре, может, и не удастся, а я в
это все лезть не хочу (RNC). ‘Do you really think that the game will be
able to avoid politicization, revanchist accent? <. . . > – The game maybe
will not be able to avoid this, I do not want to interfere in it.’

(b) repetition of the modus:
14. – Мама, неужели ты всерьез считаешь, что он мне пара? – Я ничего

не считаю, я только вижу, что он тебя любит. (RNC) ‘Mom, do you
seriously believe that we are a couple? –— I believe/consider nothing,
I only see that he loves you.’

(c) repetition of parts of the modus and dictum:
15. — Я здесь родился, я люблю этот город, неужели вы думаете, что я

хочу оставить о себе плохую память? — Я просто думаю, что на вас
давят интересы не столько эстетического плана, сколько денежного.
(RN) ‘I was born here, I love this city, do you really think that I want
to leave a bad memory about myself? — I just think that you are under
financial influences rather than aesthetic ones.’

(d) avoidance of an answer, clarifying or counter-questions:
16. — Неужели, как Хрущев, считаете, что они не умеют рисовать?

— Хотите байку? Раз в Берлине сидим треплемся с товарищем —
галерейщиком <. . .>. (RN) ‘Do you really think, like Khrushchev, that
they do not know how to draw? — Would you like to hear a story?
Once, in Berlin, we were sitting chatting with a friend who is a gallery
owner <. . . >.’
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3.3 ПОЧЕМУ (считаешь / думаешь / полагаешь)-model

The pattern is described as follows: [lemma="почему"] []{0,5} [word="счи-
таешь" | word="считаете"] []{0,15} [lemma="\?"].

The replies include the following items:

(a) repetition of the dictum (the requested information — the reasoning of the
point of view) introduced by the subordinate conjunction потому что:
17. – Почему вы так думаете? – Потому что очень хорошо его знаю!

– с мстительным удовольствием сказала Марьяна (RNC). ‘Why do
you think so? — Because I know him very well! — Mariana said, with
vindictive pleasure. ’

(b) repetition of the modus (mental predicates) that does not contain the
reasoning of the opinion as the addressee disagrees:
18. К. Почему вы так думаете? П. Тут и думать нечего. <Никто из

наших деревенских Степшу убить не мог> (RNC) ‘K. Why do you
think so? P. There is nothing to think about. No one from our village
could (not) kill Stepsha.’

3.4 ОТЧЕГО (считаешь / думаешь / полагаешь)-model

The pattern is described as follows [lemma="отчего"] []{0,5} [word="пола-
гаешь" | word="полагаете"] []{0,15} [lemma="\?"].

This model is a variant of the ПОЧЕМУ-model being the least frequent in
the corpora: there are 0 examples in RN, and there are only 4 examples in RNC.

Like the above-mentioned, the replies partially repeat the modus or exem-
plify the motivation of the point of view:

19. – Но отчего вы так думаете? – спросил он. – Да хотя бы оттого, что в
конце концов я возвращаюсь в реальный мир, — сказал я (RNC). ‘But
why do you think so? – he asked. – If only because, in the end, I go back to
the real world – I said.’

4 Conclusion and Further Work

The paper presents preliminary results of the study of interrogative construc-
tions in Russian. The analysis shows that modus questions, although not being
very frequent in dialogues of native Russian speakers nevertheless represent a
certain trait of modern discourse. The КАК считаете / думаете-model proves to
be the most prototypical one amongst the above-described models. Construc-
tions appealing to the reasoning of the addressee’s point of view as well as
stylistically marked ones are less common.
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Abstract. Annotation tasks where the inter-annotator agreement is low
are usually considered ill-defined and not worth attention. Such tasks are
also considered unsuitable for algorithmic solution and for evaluation
of computer programs that aim at solving them. However, there is a
lot of problems (not only) in the natural language processing field that
are practically defined and do have this nature, and we need computer
programs that are able to solve them.
The paper illustrates such problems on particular examples and suggests
methodology that will enable training and evaluating tools using data
with low inter-annotator agreement.

Keywords: NLP, inter-annotator agreement, low inter-annotator agree-
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1 Introduction

Inter-annotator agreement (IAA) is considered one of the key indicators of
whether a particular classification task is well-defined or not. A lot of attention
has been paid to the IAA problem [1,2,3] aiming at not only measuring the
agreement, but also excluding the expected amount of agreements by chance,
and interpretation of different values of the IAA measurements.

The task is generally considered well-defined, if the inter-annotator agree-
ment is very high, and ill-defined and not worth attention, if the agreement is
rather low. To our best knowledge, this is a common view for all classification
tasks, through all scientific fields.

In the field of natural language processing (NLP), however, there is a huge
number of tasks that do not have naturally high inter-annotator agreement, as
people do not agree on the right annotation (even if they are well-educated
specialists). Even for such a seemingly straightforward task as morphological
tagging (of English), the reported IAA is around 97 percent [4], for more com-
plex tasks like syntactic analysis, information extraction or question answering,
it is much much less (e.g. [5]).
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This discrepancy (need for high IAA vs. naturally low IAA in case of most
of the NLP tasks) leads to undesirable side-effects. On one side, there are
extremely extensive manuals for annotation [6,7] containing hundreds of pages.
On the other hand, inter-annotator agreement is rarely published – e.g. the
reported IAA for English morphological tagging comes from a semi-official
note [4], for Prague Dependency Treebank (PDT [8]), the primary syntactic
resource for Czech, there is only one report that describes the annotation of
a specific sub-part of PDT [9] which does not report very high numbers in case
of important parts of the annotation. It is of course just a speculation, but our
opinion is that the results are not published because low IAA numbers would
put the whole (mostly very costly) resources in a bad light.

We think both of these effects are really bad, as the aim of all NLP tasks
is to learn computers what humans are able to do without any manuals –
understand the language – so there should be only minimalistic instructions
for any NLP annotation. On the other hand, ambiguity (and low agreement
rate) is natural – people often read same sentences differently, and often have
to ensure that they understand each other correctly. We can say that low IAA is
an integral property of natural languages.

Therefore, we need to be able to handle the tasks with low IAA and use
the data with low IAA in training and evaluations, rather than ignore them or
try to overcome the fact that the language is ambiguous. This paper suggests a
method for using the data with low IAA for meaningful evaluations. We discuss
the requirements on such a method, and also some drawbacks and limits of the
proposed approach.

2 Problem Examples

In this section we provide real-world examples of the tasks where low IAA
causes problems.

2.1 Syntactic Annotation

An example of the project that tried to solve low IAA by extensive manuals for
annotation, is syntactic annotation in the Prague Dependency Treebank (PDT
[8]), a leading syntactic resource for Czech that we have already mentioned.
The manual on the analytical (syntactic) layer has about 300 pages [7], and the
annotation procedure was as follows.

Each sentence was annotated by 2 independent annotators, and where they
did not agree, there was a third (more experienced) annotator to judge them
[8]. So, the one and only syntactic representation available in the treebank is
often based on 2/3 biased agreements according to a very complex manual.
This procedure is error-prone, and also many of the rules in the manual are
debatable. Some of the resulting problems are discussed in [10].

But mainly, the procedure goes against the ambiguous character of the
language: In sentences like “A plane crashed into the field behind the forest”, it
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does not matter for correct understanding the sentence, whether the phrase
“behind the forest” depends on “crashed” or “field” (although in similar sentences
it may be very important). The resulting information is the same. But the
annotators need to decide it, and so do the syntactic parsers that are trained and
evaluated using this data. This does not correspond to the analysis procedure
as it happens when humans analyze the text.

And this is just one example of frequent syntactic ambiguity of many.

2.2 Collocation and Terminology Extraction

Extraction of collocations is an important task for language learners and
dictionary makers, to learn or record that in English one says “strong tea” rather
than “powerful tea” or “light a fire” instead of “make a fire”. However, the
agreement among lexicographers on what is good collocation and what is not,
is very low [11].

On the other hand, the automatic applications for collocation extraction (e.g.
Sketch Engine [12]) are present and they are commercially interesting. They
just did not undergo a proper scientific evaluation yet (the procedure reported
in [11] is rather debatable, as it uses the same methodology that is used in
classification tasks with high IAA), as there is no methodology for evaluating
tasks with such a large grey (disagreement) zone.

For extraction of terminology from domain-specific texts, there is nearly the
same situation. Terminology (e.g. in form of list of terms) is needed for termi-
nology dictionaries, language learners and consistent translations, and the ap-
plications are already there (e.g. [13]). But the agreement on what is and what
is not a term in a given domain is very low, and proper evaluation is missing,
as there is no methodology available.

The three examples above only illustrate the problem – there are many
similar tasks that are neither solved nor evaluated, as they are not “well-
defined”, however, they are needed and we need a methodology to evaluate
them.

3 Methodology Proposal

In this section we present our proposal for annotation and evaluation of tasks
with low IAA.

3.1 Requirements

We will illustrate requirements on a binary classification task, which is a
typical case (most of the tasks can be straightforwardly reduced to a binary
classification task). Let us have classes Positive and Negative, and the task is to
assign each data item to one of these classes. We want to evaluate an automatic
tool that does this classification in some imperfect way.
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Then, let us have some “gold standard” data annotated by multiple human
annotators, that agree in some cases, and disagree in others.

The automatic tool should get positive points for every item assignment into
class Positive, where all the human annotators agreed that it should be class
Positive. Similarly for Negative. The tool should get negative points for every
item assignment into class Positive, where all the human annotators agreed that
it should be class Negative, and vice versa.

We need to be able to handle cases where the annotators do not agree with
each other. We propose taking these cases off the evaluation and not count them
in at all. Because if even one of the annotators interprets the data differently, the
general “human interpretation” is not clear and the automatic tool should get
neither positive, nor negative points for any assignment, in these cases.

3.2 Proposed Procedure

Based on the requirements, we introduce a modification of the standard
measures precision and recall, defined for unambiguous gold standard data
without human disagreements as follows:

precision =
#true_positives

#true_positives + #false_positives

recall =
#true_positives

#true_positives + #false_negatives

The modified precision and recall will use the same formulas, but with different
meaning of true_positive, false_positive and false_negative:

– #true_positives will be defined as number of data items where all the human
annotations were Positive and our tool said Positive.

– #false_positives will be defined as number of data items where all the
annotations were Negative but the output of our tool said Positive.

– #false_negatives will be defined as number of data items where all the
annotations were Positive and our tool said Negative.

In other words, we firstly remove all the data items where the human annota-
tors disagree, and then measure standard precision and recall on the rest.

This idea can be easily generalized to classification into more classes. In that
case, however, we may want to give some positive points in addition if the
output of our tool agreed at least with one of the annotators, and/or negative
points if the output of our tool agreed with none of the annotators, even if they
did not agree. In this case, we will be able to somehow use the data even if
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the annotators disagree. However, this approach brings more complexity into
the evaluation and it may me better to transform the problem into a binary
classification task, which is possible in most cases, and transparent.

4 Discussion

There are some difficulties with the above introduced procedure. In the follow-
ing points we mention them and discuss possible solutions:

– On the first sight, the procedure increases the price of the testing data,
as many of the annotations (all cases where the annotators disagreed) are
not used. However, the data will record ambiguity and will be of higher
quality than if we attempt to decide the disagreements. Therefore, also the
evaluations will be more sound, and automated learning from such data
will be able to be more informed.

– We need to count with random agreements, especially when the part of the
data where people disagree is rather big. Probability of random agreements
can be easily computed for most of the classification tasks, and can be
trivially decreased by increasing the number of annotators. For example,
if probability of Positive judgement is 50%, increasing number of annotators
to 7 will reduce the number of random agreements below 1%. Of course,
sometimes it will mean increasing costs again. On the other hand, in most
of the tasks the probability of the Positive judgement is much lower.

– In cases where the agreement is really low, the question whether the task is
well-defined or not, will persist. The maintainers of the data should check
carefully if the level of disagreement corresponds to the real ambiguity
of the task and correct the annotation instructions if not. It is not easy to
introduce a quantitative algorithmic test here, as the level of ambiguity
significantly varies among various tasks.

5 Conclusions

We have introduced a new view on classification problems where people often
disagree, mainly from the perspective of natural language processing, but
suitable for any other field. We have proposed a methodology for using data
with disagreements for testing (and partly training) of automatic classification
tools. The proposed method is straightforward and easily applicable to any
data.

We believe that in the future the data with disagreements will not be
considered radioactive and they will be used for serious research. Also, we
believe that the idea will encourage data maintainers to publish their agreement
figures consistently.
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Abstract. We present a new web interface for English language learning:
SkELL. The name stands for Sketch Engine for Language Learning and is
aimed at students and teachers of English language. We describe SkELL
features and the processing of corpus data which is fundamental for
SkELL: spam free, high quality texts from various domains including
diverse text types covering majority of English language phenomena.

Keywords: Sketch Engine, concordance, thesaurus, word sketch, lan-
guage learning, English language, corpus

1 Introduction

There are many websites for language learners: wordreference.com1 and Using
English2 are just two of many. Some of them are using corpus tools or corpus
data such as Linguee3, Wordnik4, bab.la5. They usually provide dictionary-like
features: definitions and translation equivalents in selected languages. Some of
them provide even examples from parallel corpora (Linguee).

We introduce here a new web interface aimed at teachers and students of
English language which offers similar functions as above-mentioned tools but
at the same time it is based on a specially processed corpus data suitable for the
language learning purpose.

We call it SkELL: Sketch Engine for Language Learning. The Sketch Engine6

is a state-of-the-art web-based tool for building, managing and exploring large

1 http://www.wordreference.com/
2 http://www.usingenglish.com/
3 http://www.linguee.com/
4 http://www.wordnik.com/
5 http://en.bab.la/
6 http://www.sketchengine.co.uk
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text collections in dozens of languages. SkELL is derived from the Sketch
Engine and the data SkELL relies upon (SkELL corpus) is built using the
very same tools as Sketch Engine uses: web crawler SpiderLing [1], tokeniser
unitok.py [2] and TreeTagger [3]. Also, it uses a technique for scoring sentences
according their appropriateness for using as example sentences in learners’
dictionaries, GDEX [4].

2 Features of SkELL

SkELL features offer three ways for exploring the SkELL corpus. The first is
the concordance: for a given word or phrase, it will return up to 40 example
sentences. The second is the word sketch through which typical collocates for
a given word can be discovered. And the third is similar words (thesaurus)
which lists words that are similar to, though not necessarily synonymous with,
a search word. The similar words are visualized with a word cloud. The web
interface is optimized for mobile and touch devices.

SkELL features are built upon Bonito corpus manager [5] features. Bonito
provides many standard functions as many other corpus managers: concor-
dancing, word list generating, context statistics and also some advanced fea-
tures like distributional thesaurus [6] and word sketches [7]. We have chosen
these three: 1) concordance, 2) word sketch and 3) thesaurus (similar words).

2.1 Concordance (or examples)

Fig. 1: Example of concordance for language learning phrase

Concordance offers a powerful full-text search tool. For a word or a phrase
it returns up to 40 example sentences featuring the query words. Concordance
feature is useful for discovering how words behave in English.
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The search is case insensitive, i.e. it will yield the same results for rutherford
and Rutherford. Moreover the results may contain the query (a word or a phrase)
in a derived word form. For mouse (lemma) it will find sentences also with
mice. For mice the result will contain a different set of sentences: only mice
occurrences.

It is not necessary for users to specify part of speech (PoS, e.g. noun, verb,
adjective, preposition, adverb etc.) of the search term is not necessary. If you
search for book, it will give sentences with book as a verb and as a noun and both
in various word forms (booking, booked, books).

2.2 Word sketch (or word profile)

Fig. 2: Example of word sketch for lunch.

Word sketch function is very useful for discovering collocates and for
studying contextual behaviour of words. Collocates of a word are words which
occur frequently together with the word—they “co-locate” with the word. See
[7] for more info.

For query mouse, SkELL will generate several tables containing collocates of
the headword mouse. Table headers describe what kind of collocates (always in
basic word form) they contain.

By clicking on a collocate, a concordance with highlighted headwords and
collocates is shown. This way it can be seen how the two collocates together are
usually used in English language.

By default, the most frequent PoS is shown in Word Sketches. If a word
(book, fast, key, . . . ) can have more than one PoS, the alternative links are shown
next to the headword (see in Figure 2).
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Fig. 3: Example of similar words in word cloud for lunch.

2.3 Similar words (or thesaurus)

The third functions serves for finding words which are similar (not only
synonyms) to a search word. For a word (multi word queries are not supported
yet) SkELL will return list of up to 40 most similar words visualized using
wordcloud. The wordcloud is generated using D3.js library7 and a wordcloud
plugin8.

As in Word Sketch if a word can have more than one PoS, the links to
alternative results are provided.

3 SkELL corpus

SkELL is using a large text collection—SkELL corpus—gathered specially for
the purpose of English language learning. It consists of texts from news, aca-
demic papers, Wikipedia articles, open-source (non)-fiction books, webpages,
discussion forums, blogs etc. There are more than 60 million sentences in SkELL
corpus and more than one billion words in total. This amount of textual data
provides a sufficient coverage of everyday, standard, formal and professional
English language.

In the following subsections we describe the most important data resources
which have been used in building the SkELL corpus and the processing of the
data.

3.1 English Wikipedia

One of the largest parts of SkELL corpus is English Wikipedia.9 We have used
Wikipedia XML dump10 from October 2014. The XML file has been converted

7 http://d3js.org/
8 http://www.jasondavies.com/wordcloud/about/
9 https://en.wikipedia.org

10 https://dumps.wikimedia.org/

http://d3js.org/
http://www.jasondavies.com/wordcloud/about/
https://en.wikipedia.org
https://dumps.wikimedia.org/
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to plain text preserving only a few structure tags (documents, headings,
paragraphs). using slightly modified script WikiExtractor.py11. We have
filtered thousands of articles which are supposed to not contain fluent English
text, e.g. articles named “List of ...” and then sorted all articles according their
length and took top 130,000 articles. Among the longest articles there were e.g.:
South African labour law, History of Austria, Blockade of Germany, ... It is clear that
there are many articles from geographical and historical domains.

3.2 Project Gutenberg

The Project Gutenberg12 (PG) focuses on gathering public domain texts in many
languages. The majority of texts is in English. We have downloaded all English
texts using wget13. and converted the HTML files to plain text.

The largest texts in English PG collection are The Memoires of Casanova, The
Bible (Douay-Rheims version), The King James Bible, Maupassant’s Original short
stories, Encyclopaedia Britannica, etc.

3.3 English web corpus, enTenTen14

We have prepared two subsets from the enTenTen14 [8] which has been crawled
in 2014. The White (bigger) part contains only documents from web domains
in dmoz.org or in the whitelist of urlblacklist.com. The Superwhite (smaller)
containing documents domains listed in the whitelist of urlblacklist.com – a
subset of White (in case there is still some spam in the larger part taken from
dmoz.org)

Categories from the following list are allowed categories from dmoz.org in
Superwhite part: 1) blog: journal/diary websites, 2) childcare: sites to do with
childcare, 3) culinary: sites about cooking, 4) entertainment: sites that promote
movies, books, magazine, humor, 5) games: game related sites, 6) gardening:
gardening sites, 7) government: military and schools etc., 8) homerepair: sites
about home repair, 9) hygiene: sites about hygiene and other personal grooming
related stuff, 10) medical: medical websites, 11) news: news sites, 12) pets:
pet sites, 13) radio: non-news related radio and television, 14) religion: sites
promoting religion, 15) sportnews: sport news sites, 16) sports: all sport sites,
17) vacation: sites about going on holiday, 18) weather: weather news sites
and weather related and 19) whitelist: sites specifically 100% suitable for kids.
Finally we have decided to include the whole White part. It contained 1.6 billion
tokens.

11 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
12 http://www.gutenberg.org/
13 http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_

to_our_Pages

dmoz.org
dmoz.org
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
http://www.gutenberg.org/
http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages
http://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages
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3.4 WebBootCat corpus

One part of the SkELL corpus has been built using WebBootCat [9]. This
approach uses seed words to prepare queries for a search engine. The pages
from the search results are downloaded, cleaned and converted to plain text
preserving basic structure tags. We assume the search results from the search
engine are spam-free. We have run the tool several times with general English
words as seed words yielding approximately 100 million tokens.

3.5 Other resources

The whole British National Corpus [10] has been also included. The rest of the
SkELL corpus consists of free news sources. The Table 1 contains all the sources
used in SkELL corpus.

Table 1: Sources used in SkELL corpus
Subcorpus tokens used

Wiki 1.6 G 500 M
Gutenberg 530 M 200 M

White 1.6 G 500 M
WebBootCated 105 M all

BNC 112 M all
other sources 344 M 200 M

3.6 Processing the data

When all the subparts have been gathered and pre-cleaned (we have removed
all structures except sentences), we have run it through our standard processing
pipe:

1. normalization: quotes, interpunction normalization,
2. tokenization: we have used unitok.py,14

3. TreeTagger15 for English,
4. deduplication on sentence level: onion tool16 has been used.

The corpus was then compiled using manatee indexing library [5]. Then we
have scored all sentences in the corpus using GDEX tool [4] for finding good
dictionary examples (sentences) for query results. All sentences in the corpus
were sorted according to the score and saved in this order. This is a crucial
part of the processing as it speeds up further querying of the corpus. Instead of

14 https://corpus.tools
15 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
16 http://nlp.fi.muni.cz/projects/onion/

https://corpus.tools
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://nlp.fi.muni.cz/projects/onion/


SkELL 69

sorting good dictionary examples on-the-fly (which is used in Sketch Engine),
all query results for concordance searches are presorted in the source vertical
file.

The standard GDEX definition file used for English has been only slightly
changed to prefer sentences with more frequent words, filtering out effectively
all sentences with special terminology, typos and rare words (rare names). By
default, short sentences are preferred, sentences containing inappropriate or
spam words are scored lower.

The word sketch grammar required for computing word sketches has been
modified: it contains only a few grammar rules with self-explanatory names.

3.7 Versioning and referencing

Since SkELL corpus may be changed in the future (further cleaned, refined,
updated), all references to particular results of SkELL should be accompanied
by the current version. The web interface may also be changed occasionally.
That is why at the bottom of SkELL page, there is a version in this format:
version1-version2. The first corresponds to a version of the web interface and
the second to a version of SkELL corpus.

4 Conclusions and future work

The web interface is available at http://skell.sketchengine.co.uk. The
version for mobile devices which is optimized for smaller screens and for touch
interfaces is available at http://skellm.sketchengine.co.uk. If you access
the former link from a mobile device it should be detected and redirected to
the mobile version automatically.

We have described a new tool which we belive will turn out to be very useful
for both teachers and students of English. The processing chain is ready to be
used also for other languages. The interface is also directly reusable for other
languages, the only prerequisite is the preparation of the corpus.

We are gathering feedback from various users and will refine the corpus
data according it. In the future we plan these updates to SkELL:

1. to create a special grammar relation for English phrasal verbs,
2. to combine examples for collocations from word sketch collocates to build

a more representative concordance for a given word,
3. to update the corpus with the newest text resources to provide examples

for the newest trending words and neologisms,
4. to analyse access logs of SkELL and put favourite searches to the main page,
5. to provide commonest string [11] for word sketch collocates,
6. to allow multi word sketches which have been already introduced in [11],
7. to implement necessary methods for multi word thesaurus and
8. to build SkELL also for other languages (Russian, Czech, German and

other).

http://skell.sketchengine.co.uk
http://skellm.sketchengine.co.uk
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Abstract. This paper presents unitok, a tool for tokenisation of text in
many languages. Although a simple idea – exploiting spaces in the text to
separate tokens – works well most of the time, the rest of observed cases is
quite complicated, language dependent and requires a special treatment.
The paper covers the overall design of unitok as well as the way the tool
deals with some language or web data specific tokenisation cases. The
rule what to consider a token is briefly described. The tool is compared to
two other tokenisers in terms of output token count and tokenising speed.
unitok is publicly available under the GPL licence at http://corpus.

tools.

Keywords: tokenisation, corpus tool

1 Introduction

Tokenisation of a text is the process of splitting the text to units suitable
for further computational processing. It is an important data preparation
step allowing to perform more advanced tasks like morphological tagging or
parsing. Applying a good tokenisation method is necessary for building usable
text corpora.

Using spaces in the text as token delimiters is a simple and quick way
to tokenise text. In fact, the presented approach is based on this observation.
However, there are many complicated cases to deal with which cannot be
solved just by splitting tokens by space characters. Some cases are language
dependent and require a special treatment. Other sequences to recognize as
single or multiple tokens come from the web pages – a rich yielding source of
data in text corpora [4].

The aim of this work was to develop a tokeniser

– fast – able to process big data in billion word sized corpora,
– reliable – robust to deal with messy web data,

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 71–75, 2014. c○ NLP Consulting 2014
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– universal – allowing at least basic support for all writing systems utilizing
a whitespace to separate words1,

– easy to maintain – adding new tokenisation rules or making corrections
based on evaluation should be straightforward,

– text stream operating – text in, tokenised text (one token per line) out2,
– reversible – the tokenised output must contain all information needed for

reconstructing the original text3

The resulting tool called unitok has been developed since 2009. It has become
a part of corpus processing pipeline used for many corpora [3,1,6] since then.

2 The Problem of Words

There are legitimate questions and related problems concerning the desired
behaviour of a good tokeniser: What is a word, what is a sentence? [2] Our
approach to unitok is based on the point of view of a corpus user. It is important
to know what tokens the users search for in the corpus concordancer (and other
corpus inspection tools) and what tokens they expect to figure in the corpus
based analysis (such as word frequency lists, collocations (Word Sketches),
thesaurus, etc.).

The answer is the users search for sequences of letters. Sequences of
numbers, marks, punctuation, symbols, separators and other characters should
be clustered together in order to be counted as single tokens in corpus statistics.
The definition of the charater classes and mapping of each letter to a class has
been made by The Unicode Consortium.4

3 Implementation

3.1 Related Work

A set of rules in flex5 has been used by [5] to implement a tokeniser. We chose
to write a Python script heavily utilising the re library for manipulation with

1 The dependency of the tool on space characters separating words is a prerequisite
for a broad coverage of languages/writing systems but rules out applicability to
processing text in languages such as Chinese, Korean, Japanese and Thai. We have to
employ other tools made for the particular language/script in these cases to tokenise
texts well.

2 The stream operating feature is necessary for making the tool a part of a corpus
processing tool pipeline: the source plain text goes in, each processing tool is applied
in a defined order to the result of the previous tool, the fully processed (tokenised,
tagged, annotated, etc. data comes out.

3 Reconstructing the original text can be useful for applying the tokenisation again after
improving the tokenisation rules. Other tokenisers we use do not offer this option,
therefore a copy of the original plain text has to be kept along with the tokenised
vertical.

4 http://unicode.org, the character class mapping is published at http://www.

unicode.org/Public/UNIDATA/UnicodeData.txt (accessed 2014-11-17).
5 A fast lexical analyzer, http://flex.sourceforge.net/

http://unicode.org
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://flex.sourceforge.net/
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regular expressions6. The reason is we wanted to deal with some practical
issues (described later on in this chapter) programmatically rather than by
string/regexp matching and in the way which is more familiar to us.

We would like to acknowledge Laurent Pointal’s Tree Tagger wrapper7

which contributed the regular experessions to match the web related tokens.
Unlike the Tree Tagger wrapper, unitok does just the tokenisation. It works
independently of a particular tagger and thus can be combined with any tagger
operating on text streams. The subsequent tagging, if required, is defined by
the whole text processing pipeline.

3.2 The Method

As has been stated, unitok comes as a self standing Python script utilising the
re library and operating on a text stream. The input text is decoded to unicode,
normalised, scanned for sequences forming tokens, the tokens are separated
by line breaks and the result vertical (one token per line) is encoded into the
original encoding.

The normalisation deals with SGML entities by replacing them with unicode
equivalents (e.g. ‘&amp;’ by ‘&’ or ‘&ndash;’ by ‘–’). Unimportant control
characters (the ‘C’ class in the Unicode specification) are stripped off. All
whitespace (the ‘S’ class, e.g. a zero width space or a paragraph separator) is
replaced by a single ordinary space.

Sequences of letters (i.e. words) are kept together. Sequences of numbers,
marks, punctuation, and symbols kept by the normalisation are clustered to-
gether. The present SGML markup (usually HTML/XML) is preserved. The
script also handles web related tokens: URLs, e-mail addreses, DNS domains,
IP addresses are recognized. General abbreviations (uppercase characters op-
tionally combined with numbers) are recognized.

Predefined language specific rules are applied. These are recognizing clitics
(e.g. ‘d’accord’ in French)8, matching abbreviations (e.g. ‘Prof.’ generally, ‘např.’
in Czech)9) or special character rules (e.g. Unicode positions from 0780 to 07bf
are considered word characters in Maldivian script Thaana).

The reversibility of tokenisation is ensured by inserting a ‘glue’ XML
element between tokens not separated by a space in the input data. The most
common case is the punctuation. An example showing the placement of the
glue tag is given by Figure 1. The vertical with glue tags can be reverted to the
original plain text using a short accompanying script vert2plain.

The language specific data (clitics, abbreviations, special word characters)
are currently available for Czech, Danish, Dutch, English, French, Finnish,

6 https://docs.python.org/2/library/re.html
7 http://perso.limsi.fr/pointal/dev:treetaggerwrapper
8 Lists of clictics were taken from the TreeTagger: http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger/

9 The lists of language specific abbreviations were taken from the respective Wikipedia
page, e.g. http://cs.wiktionary.org/wiki/Kategorie:%C4%8Cesk%C3%A9_zkratky
for Czech.

https://docs.python.org/2/library/re.html
http://perso.limsi.fr/pointal/dev:treetaggerwrapper
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://cs.wiktionary.org/wiki/Kategorie:%C4%8Cesk%C3%A9_zkratky
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The

"

<g/>

end

<g/>

"

<g/>

.

Fig. 1: Example of tokenised and verticalised string ‘The "end".’ showing the
placement of the glue tag <g/>.

German, Greek, Hindi, Italian, Maldivian, Spanish, Swedish, Yoruba. Texts
in other language are processed with default setting (making e.g. the ‘prof.’
abbreviation always recognizable).

The output can be tagged (or generally further processed) by any tool
operating on text streams with one token per line and XML tags.

4 Evaluation

A comparison of the output token count and the speed (expressed in output
tokens per second) of three tokenisers – unitok, TreeTaggerWrapper and Freeling
– can be found in Table 1. Two measurements were carried out using 1 GB
sized plain texts in six European languages on a single core of Intel Xeon CPU
E5-2650 v2 2.60 GHz. Specific recognition of clitics and abbreviations was on
for all except Russian where the general setting was in effect. Only languages
supported by TreeTaggerWrapper and Freeling were included in the test.

We found there is a noticeable difference between the tools in the number
of output tokens. The speed tests revealed unitok was the slowest of the three
tools but still quite sufficient for fast processing of large text data. Part of the
performance drop is caused by providing the glue marks.

5 Conclusion

unitok is a fast processing tool for tokenisation of texts with spaces between
words. The main benefits are good coverage of various sequences of characters,
especially web phenomena, normalisation of messy control or whitespace
characters, reversibility of the tokenised output and extensibility by language
specific rules.

The tool has been successfully used for tokenising source texts for building
large web corpora. The evaluation suggests we should consider improving the
script to increase the speed of tokenisation in the future.

Acknowledgements This work has been partly supported by the Ministry
of Education of CR within the LINDAT-Clarin project LM2010013 and by the
Czech-Norwegian Research Programme within the HaBiT Project 7F14047.
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Table 1: Comparison of tokenising speed and token count of unitok, Freeling
and TreeTaggerWrapper. unitok is the base of the relative token count and the
relative tokenising speed.

Language tool output tokens rel tok duration tok/s rel tok/s
English Unitok 207,806,261 100% 6,880 s 30,200 100%

TTWrapper 200,122,178 −3.70% 2,380 s 84,100 +178%
Freeling 215,790,562 +3.84% 2,670 s 80,800 +168%

Spanish Unitok 196,385,184 100% 6,250 s 31,400 100%
TTWrapper 204,867,056 +4.32% 2,260 s 90,600 +188%
Freeling 201,413,272 +2.56% 2,040 s 98,700 +214%

German Unitok 171,354,427 100% 5,530 s 31,000 100%
TTWrapper 179,120,243 +4.53% 2,360 s 75,900 +145%

French Unitok 202,542,294 100% 6,400 s 31,600 100%
TTWrapper 242,965,328 +20.0% 2,870 s 84,700 +168%
Freeling 211,517,995 +4.43% 2,300 s 92,000 +191%

Russian Unitok 98,343,308 100% 3,170 s 31,023 100%
Freeling 102,565,908 +4.29% 1,450 s 70,800 +128%

Czech Unitok 183,986,726 5,960 s 30,900
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Abstract. Many natural language processing applicatons use clustering
or other statistical methods to create sets of words. Such sets group
together words with similar meaning and in many cases humans can find
an appropriate term quickly. On the other hand computers represent such
sets with a meaningless number or ID. This paper proposes an algorithm
for automatic finding of names of word sets. It provides result examples
as a simple evaluation of the method.

Keywords: names of word sets, naming clusters, distributional thesaurus

1 Introduction

There are many applications in natural language processing which process
words or lemmas and create some sets of words. Usually it is done via some
type of clustering but they could be done using many different statistical
methods.

As an example of such applications see Figure 1, it presents an thesaurus for
word milk in the Sketch Engine system [1]. Thesaurus is computed automati-
cally using a distributional similarity method [2]. The individual words which
are similar to the given word (milk) are clustered using a bottom up clustering.
The front words of each cluster is the word with the highest similarity score in
the cluster.

The Sketch Engine thesaurus is based on the Word Sketches. These are one
page collocational behavior of a word, an exampel of a Word Skech for verb
break is displayed in Figure 2. In is used mainly in lexicography and language
learning. A Word Sketch provides lists of collocations devided into several
grammatical relations. On the Figure 2, some collocations are clustered using
the same technique as in the Thesarus.

The final example is from LDA-frames project [3], Figure 3. LDA-frames is
an unsupervised approach to identifying semantic frames from semantically
unlabelled text corpora. There are many frame formalisms but most of them
suffer from the problem that all frames must be created manually and the set
of semantic roles must be predefined. The LDA-Frames approach, based on the

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 77–81, 2014. c○ NLP Consulting 2014
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Fig. 1: Thesaurus of milk in the Sketch Engine

Latent Dirichlet Allocation, avoids both these problems by employing statistics
on a syntactically tagged corpus. The only information that should be given is
a number of semantic frames and a number of semantic roles to be identified.

From all these examples we can see that many clusters clearly define one
common meaning. A native speaker could easily choose a single word name for
such cluster. This paper presents an algorithm to find such name automatically.

2 Proposed Method

The proposed method exploits the distributional thesaurus data which provide
a list of similar words for a given word. The algorithm works as follows:

1. for each word in the given set find a list of top similar words in the
thesaurus

2. sum the score for each of similar words across all given words
3. add 1 to the sums for each input words (the most similar word for any word

is the word itself)
4. sort similar words according to the sums of scores
5. display the top items from the list

3 Evaluation

To our knowledge, there are no evaluation data available. We are going to
prepare such gold data as a future work. As a simple form of evaluation we
list results of the algorithm on our test data. They are presented in Table 1.
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Fig. 2: Word sketch of verb break in the Sketch Engine

Table 1: Result of the algorithm on test data.
input word set output top names

oil coal gas fuel-n 0.696
energy-n 0.536

Britain Scotland Europe England country-n 4.189
area-n 3.308

apple pear orange fruit-n 2.145
thing-n 1.441

procedure study analysis method programme system-n 5.367
work-n 4.959

pint bottle litre gallon glass-n 2.371
water-n 2.258

meat fruit vegetable potato food-n 3.291
fish-n 2.803

village town city-n 0.611
area-n 0.478
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Fig. 3: Verb eat in LDA-frames

4 Interface

The algorithm is implemented as a command line script. It is written in Python
and uses the Sketch Engine API to access the thesaurus data. We assume that
after more finetuning the algorithm will be included into the Sketch Engine
system. An example of a usage is at Figure 4.

$ clustname.py bnc2 bnc-hyper n Britain Scotland Europe England

country-n 4.18891489506

area-n 3.50870908797

year-n 3.5038651228

London-n 3.2635447681

world-n 3.13785666227

Fig. 4: An example of the clustname.py tool usage.
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5 Conclusions

We have proposed an algorithm for finding names for a set of words. The
implementation is mostly language and corpus independent and works quite
well for many test data.
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Abstract. The analysis of author’s characteristic writing style and vocab-
ulary has been used to uncover the identity of authors of documents by
both manual linguistic approaches and automatic algorithmic methods.
The revealing of the gender, name, or age can help to expose pedophiles
in social networks, false product reviews on the Internet servers, or ma-
chine translations submitted as manually translated texts.
These problems are predominantly solved by a combination of stylometry
and machine learning techniques. Since the stylometry focuses on the
author’s style, word n-grams cannot be used as a style marker. Stop words
are not influenced by a topic of documents, therefore they can be used to
create style markers.
In this paper, we present a guidance on how to implement stop-word ex-
traction and to include stop-words based style markers into a multilingual
classification system based on the stylometry.

Keywords: style marker, stop-word list, corpus

1 Introduction

Anonymity is seen as the cornerstone of an Internet culture that promotes
sharing and free speech. However, anonymity can also lead to crime. The
uncovering of the true gender, name, or age of document authors can help to
expose pedophiles in social networks, false product reviews on the Internet
servers, or machine translations submitted as manually translated texts.

To reveal true identity of the document author, a variety of style markers
have been used, with better or worse results. Style markers are documents
features describing style and vocabulary of the author [1].

There are many stylometric features, such as word and sentence length, ty-
pography errors, vocabulary richness, punctuation marks, n-grams of syntactic
labels, . . . [2,3,4,5]

In the first place, a vector of at least 100 most frequent words was used in a vast
majority of recent approaches [6]. In the absence of stop-word sources, this paper
provides a technical report how to generate list of stop words and implement
style markers based on stop-word list including recommendation of tools for
text preprocessing.
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2 Text preprocessing

To extract stop words from texts, we need to preprocess documents. Therefore,
we advise to create a program for document preprocessing that takes raw text
or HTML document as an input and outputs document objects that consist of:

1. raw source document
2. document language
3. character set that is used in the document
4. plain text without any HTML tags except a paragraph tag and a link tag

where a diacritic check is provided on plain text’s words
5. tokenization of the plain text
6. morphological annotation of the tokenized text
7. lemmatization of the tokenized text

The language of input HTML text can be determined by langid tool (for
more information see [7,8]) that takes a text as a input and returns a language
code in ISO 639-1 standard. Than the character set is derived from the input
HTML text and it’s language by Chared [9] (developed at Masaryk University
in Brno). Information about the language of a document increases an accuracy
of encoding detecton, therefore we recommend to do language detection before
character set recognition.

Next we use lxml.html.clean from Python library (other tools depending
on your programming language can be used) and get rid of all HTML tags
except paragraph tags and links which can be useful for other style markers. In
this step we also process all plain text’s words by czaccent [10] (also developed
at Masaryk University in Brno) tool that provide completion of diacritics if a
word is spelled without or with incorrect diacritics. This process is necessary
only for languages using characters with diacritics.

In the following step, the text is tokenized. We recommend to use Uni-
tok [11] (universal tokenizing) program developed at Masaryk University in
Brno that splits text into tokens and add predefined XML-like tags:

– <doc> – beginning of the document
– <s> – beginning of the sentence
– </g> – omitted space between tokens
– . . .

After tokenization we pass the output into Desamb [12] tool (morphological
desambiguator). The desamb uses morphological analyzer Majka [13] to anno-
tate each word by morphological categories from the tagset of Majka and by
lemmas. Then the best fitting variant of morphological category and lemma is
selected for each token.

For our purposes we also train the Majka analyzer on Czech, Slovak and
English data, thus our system can operate with this three languages. The output
of desambiguation consists of morphological tags and lemmas for each token in
the text. Lemmas statistics can be used instead of tokens to create a stop-word
list used for style markers.

The whole process is illustrated in Figure 1.
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Text

langid
detect language

chared
detect encoding

lxml.html.clean
remove tags

czaccent
fix diacritics
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majka
add morphology

desamb
desambiguation

Document object

Fig. 1: Preprocessing text

3 Stop-word style markers

The purpose of this characteristic is to find the most frequent words (stop
words) of given language in the text and provide style marker values for them.

3.1 Stop-word extraction from a corpus

To obtain list of stop words of a given language, Sketch engine’s [14,15] freq
tool can be used on large corpora. We extracted stop words for Czech, Slovak
and English documents:

– for Czech stop words we use czTenTen corpus that consists of 5 069 447 935
tokens

– for Slovak stop words we use skTenTen corpus that consists of 876 003 720
tokens

– for English stop words we use enTenTen corpus that consists of 12 968 375
937 tokens

To extract stop-word lists using Sketch engine, you can use two console
commands:

command:
freqs $corpora ’[]’ ’word 0 tag 0’ > word_feq
freqs $corpora ’[]’ ’lemma 0 tag 0’ > lemma_feq

where $corpora is a name of the corpus. We used following corpora:

– sk: sktenten
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– cs: cztenten12_8
– en: ententen12

The advantage of the Sketch engine is that is already contains corpora for
almost every world language. If you do not have access to the Sketch engine
and you have own corpora, you can generate stop words with frequencies using
bash command line tools or any programming language.

3.2 Style markers extraction

This characteristic can use two input types thus user can choose if the calcu-
lations operate with lemmas or tokens (word represents a lemma or a token).
Below we describe calculations on words but the same calculations can be pro-
vided on lemmas too.

We calculate two types of frequencies: the absolute frequency and the
relative frequency of stop words that appear in the input text. This characteristic
is used to generate three different predominant outputs:

1. relative frequencies of stop words:

countstop_word(document)
countword(document)

2. absolute differencies of absolute values of relative frequencies of words
from the corpus and relative frequencies of words in the input text∣∣∣∣∣ countstop_word(corpus)

countword(corpus)

∣∣∣∣∣−
∣∣∣∣∣ countstop_word(document)

countword(document)

∣∣∣∣∣
3. squared values of differencies of absolute values of relative frequencies of

words from the corpus and relative frequencies of words in the input text(
countstop_word(corpus)

countword(corpus)
−

countstop_word(document)
countword(document)

)2

The first method ignores corpus frequencies and it is suitable for scenarios
we are given stop-word lists, but frequencies are counted from an untrustwor-
thy corpus or are unknown. For other situations, we recommend other two
variants. The third variant is sensitive to big deviations from corpus frequen-
cies which can be important style marker.

4 Conclusions

The style markers based on stop-word lists are easily implemented. To gener-
ate own style markers we recommend to use mentioned methods or their alter-
natives for other programming languages. Style markers based on stop-word
lists are still considered to be very beneficial for the most of algorithms using
stylometry, therefore each software solving these problems should implement
them.
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Abstract. In this paper, we analyze the situation of long sequences of
mostly capitalized words which look like a named entity but in fact
they consist of several named entities. An example of such phenomena
is hokejista (hockey player) New York Rangers Jaromír Jágr. Without splitting
the sequence correctly, we will wrongly assume that the whole capitalized
sequence is a name of the hockey player. To find out how the sequence
should be split into the correct named entities, we tested several methods.
These methods are based on the frequencies of the words they consist of
and their n-grams. The method DIFF-2 proposed in this article obtained
much better results than MI-score or logDice.

Keywords: text corpus, mutual information, named entities

In the process of creating a new question answering system, we have
encountered several problems. One of the problems that has to be solved is
extracting the roles, titles or occupation of various people from a free text.
This information together with (at least part of the) name of person often occur
together and it should be possible to extract them. In this paper we will focus
on a situation when a longer capitalized sequence of words is found and it
is required to split the sequence into multiple parts. In the next section we
will describe examples found during research in Czech corpora. The third
section describes possible approaches based on frequencies and co-occurrences
of words. The results are presented in the last section of this paper.

1 Named entities characterization

In this project, we focus on extracting two types of information. First one,
identify person’s features such as role, title or occupation of person. In that case
we are looking for a list of words that can be prepared in advance. Such words
are actress (herečka), model (modelka), hockey player (hokejista), minister (minister).
These words are often mentioned in tabloids that are a great resource of such
information. The second information type we are looking for is a relationship
between two people where both of them are mentioned. Often, they are not
referenced by full names but only by the first name or a nickname, e.g. Brooklyn,
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son of David Beckham.This information is sometimes set, sometimes it can change
in time (e.g. wife, boss). The Process of extracting valid information for given
time is not a part of this paper.

In the Czech, another issue occurs regularly. In the corpus, we can find
clusters of capitalized words where parts of such clusters belong to separate
named entities. An example of such phrase is hráč New York Rangers Jaromír
Jágr (New York Rangers’ player Jaromír Jágr) or hra Vladimíra Franze Válka s mloky
(Vladimír Franz’s play Válka s mloky). These phrases have to be identified and
separated into the relevant parts.

In this paper we focus on methods to split such sentences of mostly
capitalized words into multiple parts. During our research we have not met
many sequences that require to be split to more than two parts, so we will focus
mainly on the ones which only need to be split into two parts in next sections.
The other cases can be solved by running our methods multiple times.

2 Extraction of names

The first step in creating a system for extraction of information about people
is finding the names of people. People’s names are, obviously, capitalized in a
text which we can use. However, there are other words which are capitalized
as well – proper names such as names of institutions, nationalities, products
and artistic works. Therefore, we need to find a way to distinguish between
people and other capitalized words. We have a list of nouns that can represent a
person [1] and also a list of words that describe a relationship between people.
Our preliminary research shows that if we look for the relationship words in
the vicinity of two or more capitalized words which are not at the beginning
of a sentence, the majority of capitalized words found will contain names of
persons.

3 Separating the phrases

To separate the phrases, we have decided to use an approach based on
frequencies and co-occurrences of words. There are several ways how to
express a co-occurrence between words, we have tried the MI-score [2] and
the logDice [3]. In this section, we will present various methods together with
examples on real sequences obtained from corpus czTenTen12_8 [4]. At first,
we tried to write corpus queries in CQL [5] but we have found out that one
complex query finished in minutes which makes it almost unusable in the real-
world applications. We had to simplify the queries to work just with the n-
grams which occur in a corpora that can be found in a different way based on
the preprocessed data and now a query took less than 0.1 seconds on the same
hardware.
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3.1 Method based on mutual information between two words

The first, most naive approach is based on counting MI-score or logDice be-
tween bigrams in sequence. The sequence is a segment of text that should be di-
vided into separate named entitities. Let’s have a sequence = (w1, w2, w3, ..., wX)
then we will count both logDice and MI-score for each pair (wI , wI+1). Accord-
ing to the theory of mutual information, it can be expected that lower values
of mutual score provide a better identification of the borders as these words
should be the words that relate to each other less than others. If the sequence
itself or candidate n-gram divisions are not mentioned in corpus, we have to
modify the equation a bit and replace the occurrences of zero by one. Our
test suite1 showed that using logDice results had the precision 29.5% while MI
score’s precision was only 11.8%. Examples of selected sequences are shown in
table 1 where the text in bold represents the correct division and the numbers
in bold represent the results according to used methods.

Table 1: Detailed results of using method based on MI between two words.
Sequences shown in table are PSP Miroslava Němcová and D. Cerekve Zdeněk
Jirsa

MI-score logDice MI-score logDice
PSP - Miroslava 8.77 -14.26 D. - Cerekve -0.49 -18.18

Miroslava - Němcová 10.21 -13.71 Cerekve - Zdeněk 1.08 -18.19
Zdeněk - Jirsa 2.69 -19.44

3.2 Method based on mutual information between n-grams

In order to improve this method, we have decided to extend the above
mentioned equations to work directly on n-grams. There will be only two n-
grams for each division because we want to split the sequence to just two
parts as was explained before. The first n-gram will start at the first word of
the sequence and the second one will end with the last word. Such n-grams
do not have to be a part of the corpora so we will reuse the modification
proposed in the previous subsection and we will replace zeros with ones. Such
modifications will also be a part of every other proposed method.

When we use this method, we can expect that higher values of mutual score
will represent the correct division. This should happen because the mutual
information between two incorrectly selected n-grams should be lower as they
do not occur together as frequently as the correct ones. The precision results
when logDice was used is 41.2% and MI score’s precision is 29.5%.

1 Test suite was manually created from 17 phrases that were selected according to
estimation of frequency of different types in corpus
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Table 2: Detailed results of using method based on MI between n-grams.

MI-score logDice
PSP - Miroslava Němcová 10.07 -11.23
PSP Miroslava - Němcová 10.89 -9.86

D. - Cerekve Zdeněk Jirsa -1.49 -13.83
D. Cerekve - Zdeněk Jirsa 10.64 -4.30
D. Cerekve Zdeněk - Jirsa 4.44 -8.01

3.3 Method extended with negative n-grams

The previous method did not take into account that if a particular word always
follows the n-gram, it should be a part of it, too. Our next method is based
on very same idea. In order to count only the clean value we will subtract
the number of longer n-grams from the frequency of the shorter one. Because
we are working with the n-gram model, finding negative occurrences is not
possible like it is in CQL itself, so we have simplified this process to testing the
first adjacent word to our n-gram. For example when if we have a sequence
New York Rangers Jaromír Jágr then we will count the modified frequency for
n-gram New York as follows: freq(New York) - freq(New York Rangers).

In the ideal case, the modified frequency will be zero which will in the
case of this sequence happen only if there is not any other Jaromír in this
hockey team as he will have different surname (last word of sequence). In
such case the modified frequency will be the frequency of occurrences of the
same sequence with just the last word replaced. The number subtracted from
frequency provides additional information that can be used for evaluation too.

Table 3: Detailed results of using method based on MI between n-grams with
modified frequencies

MI-score logDice
PSP - Miroslava Němcová 10.17 -10.62
PSP Miroslava - Němcová 11.19 N/A

D. - Cerekve Zdeněk Jirsa -1.49 -13.62
D. Cerekve - Zdeněk Jirsa 11.19 -3.26
D. Cerekve Zdeněk - Jirsa 4.46 N/A

When modified frequencies will be used in the n-gram equations, the results
show that the are too many results in intermediate steps that can not be counted



Separating Named Entities 95

as the modified frequency drops to zero. As the results were heavily corrupted
by this, we have decided not to count the mutual information of n-grams but to
use only the value subtracted in equations. We have created two equations that
make sense to us.

The first one, is based on the idea that when we sum modified frequencies
(DIFF-4 – use four elements in equation) of n-grams the lowest value will
show the ideal borderline between them. The other one is just simplification
of previous one where we will sum together just subtracted values (DIFF-2 –
use two elements in equation). Unlike the previous methods these numbers are
not normalized at all but they work correctly on a selected sequence. In order to
compare values across the sequences, some normalization will have to be done
which will be a part of following research.

According to our test suite, the DIFF-4 has a precision 35.2% which ranks
it above all usage of the MI-score which could not be expected before the
experiment. The DIFF-2 method has a precision 94.1% with only one error
on the test suite. This example is D. Cerekve Zdeněk Jirsa where borders were
properly identified by n-gram methods based on both MI-score and logDice.
When we expand D. to Dolní then division will be found correctly.

4 Results and Future Work

In this paper, we have presented several methods that should divide a sequence
of words into two semantically correct parts. According to our results, using bi-
gram model does not provide the best precision on the test suite. Extending
equations for MI-score and logDice rapidly increases obtained precision. It was
shown that in both of these cases using logDice resulted into improved preci-
sion against MI-score, so we can suggest to test it also for other applications.

The best method is DIFF-2 with the precision 94.1%. It is surprising that
it does not take into account the frequency of the final n-grams. One of the
reasons why they are not used yet is that the results are not normalized so
they cannot be compared across various sequences like MI-score and logDice
allows. Obtained results are not really representative yet, so we will prepare a
larger dataset for Czech.

Although people tend to split such phrases quite easily, it is often a result of
detecting patterns of either n-grams or word-class like first names. We did not
use first names or any other source of information to be able to improve our
methods in the real applications.

In the future, we would like to focus on a way to detect sequences that
have to divided. Also the idea of normalization of DIFF-2 and DIFF-4 is very
interesting as then they can also be tested against MI-score and logDice in
different applications and for different languages.

Acknowledgements This work has been partly supported by the Masaryk
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(MUNI/A/0792/2013).
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Abstract. This work proposes a new improvement of the ‘Search and
Replace’ function well known from most text processing software.
The standard search and replace function is used to replace exact form
of words or phrases by another words or phrases in text documents. It
is quite sufficient for languages with minimal inflection such as English.
However, a well working word or phrase replacement function for
morphologically rich languages requires much more thought.
We explore the issues of implementing a useful search and replace in
the Czech language and propose solutions to majority of the problems:
A syntactic parser is employed to identify the phrases containing the
search word or phrase. The correct word forms used as a replacement
are generated by a morphological analyser.
A web demonstration utilizing the proposed solution is presented. The
attached examples of use reveal the cases in which the implemented
method works well.

Keywords: search and replace, detecting phrases, generating phrases,
subject-predicative complement

1 Motivation

This work introduces an intelligent search and replace editing tool for a text
processor in Czech. The basic search and replace is a well known function
implemented by most text processing software. A search word (or a phrase)
and the new text to replace by is entered by the user. The text processor finds all
occurrences of the search string and performs the replacement. Exact matches
are made therefore the user has to know exact forms of the search phrase.
(Some tools support searching regular expressions but that does not offer any
grammatical advantage over the basic method.)

The basic function is quite sufficient for languages with minimal inflection
such as English. Nevertheless, global search and replace without additional
knowledge can cause problems (see e.g. the Scunthorpe problem1).

We call our tool “intelligent” since it uses language knowledge to 1)
search all occurences of a word regardless its forms, and 2) avoid searching

1 See https://en.wikipedia.org/wiki/Scunthorpe_problem
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coincidentally equal substrings. Our work deals with the issue for Czech – a
highly inflective language. The improved function should be able to find all
inflected forms of the search phrase and apply the respective morphological
forms to the replacement phrase. The new search and replace tool offers the
ability to automate tedious manual edits like the basic function. A big concern
should be placed in reaching a reasonable precision. The users would not
tolerate it making mistakes.

Having such tool, one could automate many frequent cases of replacement
to save editing time:

– correction of often repeated mistakes,
– unification of terms in translation (done by the chief translating editor),
– especially unification of terms in localisation (e.g. GUI descriptions: ‘dialog

box’ – ‘dialogové okno’ (neuter gender), ‘dialogový box’ (masculine inani-
mate),

– adjusting general parts of manuals to particular products,
– changing ingredients in recipes,
– replacing person or company names in standardised documents,
– especially in legal text, e.g. common parts of contracts
– and other standardized labels, notices, signs.

2 Related Work

There is no work dealing with search and replace function of Czech phrases
known to the authors in the Czech speaking environment. Although there is
e.g. a Czech grammar checker available for Microsoft Word [6], arguably the
most widespread text processor used for Czech, there is no module for search
and replace available in the tool.

A general idea of morphological search and replace has been patented by
Microsoft [8]. In addition to that, the approach presented in this paper covers
also search and replace of multiword phrases and is able to deal with Czech
phenomena that are uncommon to English – grammatical gender and subject-
predicative complement agreements.

3 Methods

In order to replace whole phrases, we need to identify them in many differ-
ent forms. For this reason, we use the syntactic parser SET [2]. For lemmatiza-
tion and tagging, we use the tools majka and desamb respectively. The parser
takes tagged vertical as input, separates individual phrases and determines
their heads. It also determines the phrase lemma and phrase tag: in case of noun
phrases, the phrase tag corresponds to the head tag; in case of prepositional
phrases, it corresponds to the complement noun phrase. The phrase tag deter-
mination is crucial for the replacement method. The phrase lemma corresponds
to the respective lemmata in the phrase but in addition, adjective, pronoun, and
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numeral modifiers are changed to fulfil the grammatical agreement. For exam-
ple, the noun phrase “tato dvě červená jablka” (these two red apples) has the
respective lemmata: “tento” (this), “dva” (two), “červený” (red), “jablko” (ap-
ple). The noun phrase is at the same time the noun phrase lemma since it is
nominative.

If the replacement concerns head of a noun phrase or head of a complement
noun phrase (in prepositional phrases), the head tag gender and number is
compared to that of the new phrase. The replacement has to follow the same
case and number as the original phrase tag. The gender can be different and if
it is, the obligatory agreements have to be fulfilled.

In Czech, three basic types of grammatical agreement are related to noun
phrases:

– head modifiers: this grammatical agreement does not occur solely in
Slavonic languages, it is also known in Romance languages: adjectives,
pronouns and numerals modifying a particular head have to agree in
number and gender with the head

– active verb: the grammatical agreement between the subject and the verb
phrase can be complicated for analytical verbs (e.g. past tense in Czech,
that is composed from active verb to be in present tense and past participle),
moreover it relies on a correct detection of the syntactic subject

– predicative complement: if the complement is an adjective, pronoun or
numeral, it has an obligatory agreement in gender and number with the
subject. In this case, the predicative complement is hard to detect (it
depends on the copula verb occurence and the copula verbs are defined
in a very arguable way).

More formally, the replacement of phrase p by r in text T (p → r) proceeds in
the following way:

1. detect phrase lemma p(lemma) and phrase tag p(tag) for search phrase p,
and phrase lemma r(lemma) and phrase tag r(tag) for the replacement r

2. parse whole T, separate individual noun phrases and prepositional
phrases, detect their phrase tags and phrase lemmata

3. if p(lemma) is found in i-th phrase in T:
(a) replace pi(lemma) with r(lemma), we label this particular replacement

by the same index: ri
(b) modify gender of all adjective, pronoun, and numeral modifiers of

ri(lemma) if the genders of p(tag) and r(tag) differ.
(c) if pi(tag) is not nominative, decline ri(lemma) according to the case of

pi(tag)
(d) if ri is part of the subject and the clause contains a copula verb, modify

the predicative complement according to the gender of ri(tag) (only
adjective, pronoun, and numeral predicative complements are subject
of gender agreement)

(e) if ri is part of the subject and the verb phrase contains a participle,
modify the verb participle according to the gender of ri(tag)
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For all mentioned types of inflection, we use the declension and conjugation
tool [5] based on morphological generator majka [7]. Examples of grammatical
agreements follow:

Adjective Modifiers vysoký dům→ vysoká budova

Subject-Predicate dům stál na nabřeží→ budova stála na nábřeží

Subject-Predicative Complement dům byl vysoký→ budova byla vysoká

One imporant pitfall concerning the declension exists: the tagger can detect
incorrectly the case or the gender of the noun phrase/prepositional phrase.
For example, for the noun phrase “zahraniční podnik” (foreign enterprise) the
case can be either nominative or accusative (the word forms are the same).
In this case, the parsing passes without problems with both nominative or
accusative but the quality of the tagging has serious consequences. If we replace
“podnik” (enterprise, in Czech masculine inanimate) by “firma” (company, in
Czech feminine), the resulting forms differ depending on the case (“firma” in
nominative and “firmu” in accusative). In addition, other sentence parts (verb
phrase or predicative complement) may or may not change (depending on
whether the phrase is a syntactic subject).

The replacement is therefore “intelligent” in the sense that it replaces noun
phrases and prepositional phrases not substrings. Nevertheless, is does not take
word senses into consideration. This can be an issue when the assumption one
sense per discourse is not fulfilled. Particularly, in case of phrases that are part of
phrasemes, the replacement can lead to incorrect results. For example, imagine
replacing “hand” by “foot”. In this case, the phrase “on the other hand” will
result into “on the other foot”. Replacing all occurences regardless the context
can lead into errors, however, [1] proved that in 98% cases, the assumption one
sense per discourse is correct.

4 Results

A web demonstration utilizing the proposed solution for Czech has been
made available at http://nlp.fi.muni.cz/projects/phrase_replace. We
have used the application to perform replacements in instruction manuals,
cooking recipes and a definition page from an encyclopedia. The method works
well in these cases since there are not many complicated sentences there and
the present tense is usually used. See the appendix for comparison of input and
output example texts representing these kinds of replacements.

We also tried general replacements of single words as well as multi word
phrases. Despite the tool made mistakes outlined in the previous chapter, it
performed fairly well in two thirds of cases: 17 of 30 instances of changing
”dům“ to ”stavba“ in 25 random sentences from a Czech web corpus were
completely right, 4 replaces introduced a small error but the declension of the

http://nlp.fi.muni.cz/projects/phrase_replace
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target word was right (e.g. ”v stavbě“ instead of ”ve stavbě“) and 9 mistakes
were made in declension or in recognising the right part of speech (e.g. ”domů“
can be a noun or an adverb). Pronominal anaphora resolution proved to be an
issue in longer and complex sentences.

The accuracy of the method is not perfect. The problematic coverage of the
anaphora related issues or word sense desambiguation makes it even harder.
Therefore we recommend to ask the user to confirm each replacement of the
search phrase and allow a manual edit at key places in the case of utilising the
tool in a word processor.

5 Conclusion and Future Work

The paper presents a preliminary work concerning inflection-aware search
and replace of phrases in Czech. It seems that not many previous projects
pursue this topic not only in Czech but also in other languages. The reason
is that a successful replacement tool depends on other NLP tasks. In the
current version, we employ morphological analysis, tagging, parsing, and
morphological generation for inflection of the replaced phrases as well as
phrases that are subject of obligatory agreements. However, the tool is not
aware of co-references in the text. Future work will therefore concern three
main subtasks of co-reference resolution:

– Zero subject resolution In Slavonic languages, the subject does not have
to be expressed in each sentence. Zero subject resolution is needed in sen-
tences containing past participles in verb phrases or predicative comple-
ments. It is solved e.g. by [4] but not yet used in our tool. Zero subject
resolution is useful for replacements such as Bob → Alice as subject. For
example: Bob se narodil v Brně, kde také vystudoval. (Bob is born in Brno
where he also studied.) Alice se narodila v Brně, kde také vystudovala. (Alice
is born in Brno where she also studied.)

– Pronominal anaphora resolution Resolution of possessive, personal, and
demonstrative pronouns seems to be a simpler task in morphologically
rich languages with several grammatical agreements than in English. It
is partially solved by [4,3], however not yet implemented in our tool.
Pronominal anaphora resolution is suitable for replacements such as batoh
→ taška (backpack→ bag). For example: Rozdělal jsem přezky na batohu a
začal vybalovat věci. Najednou z něj vypadl plátěný pytlík s něčím omamně
voňavým. (I opened the backpack and started to unpack it. Suddenly, a
small canvas sack with something perfumed dropped out of it.)

– Abbreviated forms Even in technical text where synonymy is not desired,
abbreviated forms exist. To our knowledge, no language tool for recogniz-
ing abbreviated forms of noun phrases exist. In future, we need to build
such tool, probably based on similarity search and/or corpus-based the-
sauri. Abbreviated forms could correctly replace phrases such as: Elek-
trické travní sekačky jsou ideální na udržování menších travnatých ploch.
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Vyžadujete-li tichý chod a ohleduplnost k životnímu prostředí, vyberte si
elektrickou sekačku! (Electric lawn mowers are suitable for maintenance of
smaller areas. If you require silent operation and environment considera-
tions, choose an electric mower!)

Acknowledgements This work has been partly supported by the Ministry
of Education of CR within the LINDAT-Clarin project LM2010013 and by the
Czech-Norwegian Research Programme within the HaBiT Project 7F14047.
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Appendix: Example inputs (left column) and outputs (right
column) of the intelligent search and replace tool

Example 1: Instruction manual of a tool. Replace kráječ → bazuka.

Kráječ na potraviny je zařízení,
které doma můžete používat na krá-
jení potravin na tenké plátky jako z
lahůdkářství. Tyto domácí kráječe fun-
gují stejným způsobem jako komerční,
avšak nejsou tak výkonné. Kráječ
na potraviny Vám umožní nakrá-
jet maso a sýry na požadovanou
tloušt’ku. Protože každý kráječ je
trochu jiný, podívejte se do manuálu
na specifickou konstrukci Vašeho krá-
ječe. Většinu kráječů koupíte z velké
části složenou. Postavte základnu krá-
ječe na neklouzavý povrch. Vyberte
si místo, kde budete mít dost pros-
toru na práci s kráječem, avšak kde
nikomu nebude překážet a kde se
nikdo nezraní o jeho velmi ostrý ko-
touč.

Bazuka na potraviny je zařízení,
které doma můžete používat na krá-
jení potravin na tenké plátky jako z
lahůdkářství. Tyto domácí bazuky fun-
gují stejným způsobem jako komerční,
avšak nejsou tak výkonné. Bazuka na
potraviny Vám umožní nakrájet maso
a sýry na požadovanou tloušt’ku.
Protože každá bazuka je trochu jiná,
podívejte se do manuálu na speci-
fickou konstrukci vaší bazuky. Většinu
bazuk koupíte z velké části složenou.
Postavte základnu bazuky na nek-
louzavý povrch. Vyberte si místo, kde
budete mít dost prostoru na práci s
bazukou, avšak kde nikomu nebude
překážet a kde se nikdo nezraní o jeho
velmi ostrý kotouč.

Example 2: A cooking recipe. Replace prsíčka → kýta.

Troubu předehřejte na 190 ∘C.
Kůži na prsíčkách dobře propíchejte
vidličkou, přelijte vroucí vodou a
pak nechte dobře oschnout. V těžké,
silnostěnné nepřilnavé pánvi po-
malu opékejte prsíčka nejdříve kůží
dolů. Pak otočte a nechte opéci z
druhé strany. Vyjměte z pánve a os-
olte. Jablka rozložte do lehce ole-
jem vytřené zapékací formy nebo
pekáčku. Posypte tymiánem, přide-
jte svitek skořice a navrch rozložte
opečená prsíčka kůží nahoru.

Troubu předehřejte na 190 ∘C. Kůži
na kýtách dobře propíchejte vidličkou,
přelijte vroucí vodou a pak nechte
dobře oschnout. V těžké, silnostěnné
nepřilnavé pánvi pomalu opékejte
kýty nejdříve kůží dolů. Pak otočte a
nechte opéci z druhé strany. Vyjměte
z pánve a osolte. Jablka rozložte do
lehce olejem vytřené zapékací formy
nebo pekáčku. Posypte tymiánem,
přidejte svitek skořice a navrch ro-
zložte opečené kýty kůží nahoru.
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Example 3: A definition page from an encyclopedia. Replace ptakoještěr →
slepice.

Pterodactylus („křídelní prst“)
byl rod pterodaktyloidního ptako-
ještěra žijícího na území dnešního
Německa a zřejmě i jinde v Evropě
a Africe v období svrchní jury (asi
před 151–148 miliony let). Tento lé-
tající plaz je jedním z prvních ob-
jevených a vědecky popsaných ptako-
ještěrů vůbec. První zkameněliny byly
identifikovány již roku 1784 Cosimou
A. Collinim. Řádně vědecky popsán
pak byl počátkem 19. století. Byl to
dravec, který se živil zejména rybami
a jinými malými obratlovci, případně
i bezobratlými. K lovu mu sloužily
také drobné zuby na okrajích čelistí.
Rozpětí křídel pterodaktylů dosaho-
valo jen kolem 1,5 metru u dospělých
exemplářů, patřil tedy mezi menší
ptakoještěry.2

Pterodactylus („křídelní prst“) byl
rod pterodaktyloidního slepice žijícího na
území dnešního Německa a zřejmě
i jinde v Evropě a Africe v období
svrchní jury (asi před 151–148 mil-
iony let). Tento létající plaz je jed-
ním z prvních objevených a vědecky
popsaných slepic vůbec. První zka-
meněliny byly identifikovány již roku
1784 Cosimou A. Collinim. Řádně
vědecky popsán pak byl počátkem 19.
století. Byl to dravec, který se živil ze-
jména rybami a jinými malými obrat-
lovci, případně i bezobratlými. K lovu
mu sloužily také drobné zuby na okra-
jích čelistí. Rozpětí křídel pterodak-
tylů dosahovalo jen kolem 1,5 metru u
dospělých exemplářů, patřil tedy mezi
menší slepice.

Example 4: Random sentences from the Czech web. Replace dům → stavba.

Věděla, že se v hořícím domě
nachází člověk neschopný se vlast-
ními silami dostat ven. Každý dům
má padacími dveřmi chráněný vchod
obrácený na jih a malá okénka tam,
kde zed’ domu převyšuje střechu
domu sousedního. Každý zákazník
má již od začátku stavby jasný manuál
co vše má dům obsahovat a může si
vše lehce kontrolovat.

Věděla, že se v hořící stavbě nachází
člověk neschopný se vlastními silami
dostat ven. Každá stavba má padacími
dveřmi chráněný vchod obrácený na
jih a malá okénka tam, kde zed’ stavby
převyšuje střechu stavby sousedního.
Každý zákazník má již od začátku
stavby jasný manuál co vše má stavbu
obsahovat a může si vše lehce kon-
trolovat.

2 From Czech Wikipedia: http://cs.wikipedia.org/wiki/Pterodactylus.

http://cs.wikipedia.org/wiki/Pterodactylus
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Example 5: A name phrase. Replace chráněná krajinná oblast → národní
park.

Budeme se snažit vyhlásit chráně-
nou krajinnou oblast Prameny
Ploučnice. Je nejrozsáhlejší chráněnou
krajinnou oblastí v České republice,
nabízející množství přírodních rezer-
vací. Jako nejrozsáhlejší chráněná kra-
jinná oblast v České republice nabízela
množství přírodních rezervací.

Budeme se snažit vyhlásit národní
park Prameny Ploučnice. Je nejrozsáh-
lejším národním parkem v České re-
publice, nabízející množství přírod-
ních rezervací. Jako nejrozsáhlejší
národní park v České republice nabízel
množství přírodních rezervací.

Example 6: A change from a male name to a female name. Replace Václav
Havel → Eva Nováková.

Václav Havel působil v 60. letech
20. století v Divadle Na zábradlí,
kde jej také proslavily hry Zahradní
slavnost (1963) a Vyrozumění (1965).
9. července 1964 se Václav Havel
po osmileté známosti oženil s Olgou
Šplíchalovou. Po vypuknutí Same-
tové revoluce v listopadu 1989 se Vá-
clav Havel stal jedním ze spoluza-
kladatelů protikomunistického hnutí
Občanské fórum a jako jeho kandidát
byl 29. prosince 1989 zvolen preziden-
tem Československa.3

Eva Nováková působila v 60. letech
20. století v Divadle Na zábradlí,
kde jej také proslavily hry Zahradní
slavnost (1963) a Vyrozumění (1965).
9. července 1964 se Eva Nováková
po osmileté známosti oženila s Olgou
Šplíchalovou. Po vypuknutí Same-
tové revoluce v listopadu 1989 se
Eva Nováková stala jedna ze spoluza-
kladatelů protikomunistického hnutí
Občanské fórum a jako jeho kandidát
byl 29. prosince 1989 zvolen prezidentem
Československa.

3 From Czech Wikipedia: http://cs.wikipedia.org/wiki/V%C3%A1clav_Havel.

http://cs.wikipedia.org/wiki/V%C3%A1clav_Havel
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Abstract. We present an architecture for scientific document retrieval. An
existing system for textual and math-ware retrieval Math Indexer and
Searcher MIaS is designed for extensions by modules for textual and
math-aware entailment. The goal is to increase quality of retrieval (pre-
cision and recall) by handling natural languge variations of expressing
semantically the same in texts and/or formulae.
Entailment modules are designed to use several, ordered layers of pro-
cessing on lexical, syntactic and semantic levels using natural language
processing tools adapted for handling tree structures like mathematical
formulae. If these tools are not able to decide on the entailment, generic
knowledge databases are used deploying distributional semantics meth-
ods and tools. It is shown that sole use of distributional semantics for
semantic textual entailment decisions on sentence level is surprisingly
good. Finally, further research plans to deploy results in the digital math-
ematical libraries are outlined.

Keywords: math-aware information retrieval, semantic textual entail-
ment, math entailment, distributional semantics, Gensim

1 Introduction

Semantic-based document filtering and search module is a key component
of any Information Retrieval (IR) system. Search is a gateway to the ever-
growing database of documents in digital libraries (DL) or on the web. Even
though keyword based IR systems became part of everyday life today, they
are not fully suitable for research search to DLs, for example. The more precise
results the information seeker might get are those expressed, queried, indexed,
and retrieved based on word, sentence, paragraph, or document meaning, e.g.
semantic features of the document content.

The variation in expressivity of natural languages, including the mathemati-
cal vernacular, to describe semantically similar ideas and elements is enormous.
Keyword-based information systems try to cope with it on lexical level by mor-
phology (indexing lemmas) or by synonymical expansion like Wordnet. There
is ‘semantic web’ and ontology-based approaches based on discrete, dichotomic
representations of words and relations between them. But they are often not

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 107–117, 2014. c○ NLP Consulting 2014
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enough to handle and uniformly represent document, paragraph, sentence or
formulae meaning in IR systems, e.g. for semantically fine-grained document
filtering and similarity computations.

On the other hand, distributional semantic approaches have deserved well-
grounded attention recently. They allow to represent word or phrase meaning
in continuous high-dimensional spaces, just based on unsupervised, and often
deep, learning methods [15]. Such representations can be used for purposes like
qualified guesses of semantic similarity of words, phrases, or even sentences or
formulae.

In this paper, we design an extension module for our math-aware informa-
tion system MIaS [21]. We argue that it will further increase current perfor-
mance [12,20] by better, semantic clustering of variably expressed content.

The motivation for new architecture design is discussed in Section 2.
We describe how distributional semantics may help to compute semanticaly
similar text chunks or formulae. In Section 3 the new entailment modules of
the architecture are described. We conclude by Section 4 by describing further
directions of research.

2 Motivation for a New Architecture

When checking precision of MIaS on results from [12,20], we have realized that
some documents are not found just because of minor rephrasing of formulae or
text in query with respect to the document. We need a robust way of computing
similarity for textual phrases and formulae terms. In STEM papers, the text is
full of formulae, where we cannot simply discard them as they convey very
important semantics in dense form: semantic textual similarity is needed.

2.1 Semantic Textual Similarity

The main goal of Semantic Textual Similarity (STS) task [1] is measuring the
degree of semantic equivalence between a pair of texts, e.g. sentences. This
task can applied in many areas as Information Extraction, Question Answering,
Summarization and in Information Retrieval area for indexing the semantically
same phrases or sentences. Three STS evaluation tasks were organised in
2012 [3], 2013 [2], and 2014 [1] at SemEval workshops. In that evaluation tasks,
the systems performance was evaluated using the Pearson product-moment
correlation coefficient between the participant system scores and the human
scores.

Textual similarity problem may be tackled by various techniques at lexical,
syntactic and semantic levels 1, as usual during NLP processing. Among lexical
techniques there are word overlap metrics or n-gram matching. Another way
is to compare dependency relations of two texts. In computations one can use
synonyms, hypernyms, etc. The higher processing level, the better performance
is usually achieved.
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  Lexical
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Fig. 1: Natural language processing levels

There always remain some examples which cannot be decided by lexical,
syntactic nor semantical analysis, as full knowledge and meaning representa-
tion is needed for it. There is semantic gap between lexical surface of the text
and its meaning because same concepts are represented in different vocabulary,
languages, formalisms and notations. Updating knowledge databases with all
dialectical possibilities in supervised way is doomed to failure.

In distributional semantics approaches [5], similarities between linguistic
items could be computed from their collocativity and distributional properties
in large samples of language data in unsupervised way, as clearly seen from
visualization experiments [7]. Especially convincing are recent experiments
computed by Gensim framework [18] where words and phrases are computed
by Word2vec [14] language model. We have tried to use it for STS task.

2.2 Sentence Level Similarity Baseline Experiment

Our STS system will generate various kinds of features from each processing
level as shown in Figure 1. Finally, it will use machine learning to decide on the
similarity between two text chunks as shown in later on Figure 3 on page 113.

In a preliminary experiment we have used already pre-trained word and
phrase vectors available as part of Google News dataset [14] (about 100 billion
words). The LSA word-vector mappings model contains 300-dimensional vec-
tors for 3 million words and phrases.

Gensim [18] is a Python framework for vector space modelling. We have
used Gensim for this experiment, and computed the cosine distance between
vectors representing text chunks – sentences from SemEval tasks.

We have used English test data of Sematic Textual Similarity (STS) Task 6 [3]
from SemEval-2012, Task 6 [2] from SemEval-2013, Task 10 [1] from SemEval-
2014. Given two snippets of text, STS measures their degree of semantic
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equivalence. The SemEval organizers provided English sentence pairs of news
headlines (corpus named HDL), pairs of glosses (OnWN), image descriptions
(Images), DEFT-related discussion forums (Deft-forum) and news (Deft-news),
and tweet comments and newswire headline mappings (Tweets).

Table 1: SemEval-2014 Task 10: Multilingual Semantic Textual Similarity Test
Result

Corpus Winner score and team/run name Our score

Deft-forum 0.5305 NTNU-run3 0.42812
Deft-news 0.7850 Meerakat_mafia-Hulk 0.67999
Headlines 0.7837 NTNU-run3 0.60985
Images 0.8343 NTNU-run3 0.71402
OnWN 0.8745 MeerkatMafia-paringWords 0.79135
Tweet-news 0.7610 DLS@CU-run1 0.76571

Table 2: SemEval-2013 Task 6: Semantic Textual Similarity Test Result
Corpus Winner score and team/run name Our score

Headlines 0.7838 UMBC_EBIQUITY-saiyan 0.62501
OnWN 0.8431 deft-baseline 0.71165
FNWN 0.5818 UMBC_EBIQUITY-ParingWords 0.38353
SMT 0.6181 UMBC_EBIQUITY-ParingWords 0.32951

Table 3: SemEval-2012 Task6: Semantic Textual Similarity Test Result
Corpus Winner score and team/run name Our score

MSRpar 0.6830 baer/task6-UKP-run2_plus_postprocessing_smt_twsi 0.30103
MSRvid 0.8803 jan_snajder/task6-takelab-simple 0.68318
SMT-europal 0.5581 sranjans/task6-sranjans-1 0.54057
On-WN 0.7273 weiweitask6-weiwei-run1 0.68779
SMT-news 0.6085 desouzatask6-FBK-run3 0.51915

Tables 1, 2, and 3 show results of our minimalistic system based on dis-
tributional semantics language model compared to highest sentence similarity
scores of systems participating in SemEval-2014, 2013 and 2012. It is worth not-
ing that for Tweet-news subtask at SemEval-2014 our ‘baseline’ system using
only plain Word2vec with pretrained Google news data by LSA gave better re-
sult than the best system at SemEval-2014!

Just recently, another way of computing global distributional semantics has
been reported by Stanford’s GloVe [16]. We will compare its performance with
Word2vec. As our results on SemEval data indicate that training corpora is
very important, we have realized that Wikipedia knowledge to tackle the
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STS Similarity problem is crucial, including the named entities and formulae
available there.

2.3 Learning from Wikipedia Corpus

Wikipedia is an online encyclopedia that contains millions of articles on a wide
variety of topics with quality comparable to that of traditional encyclopedias.
In [22,17,23], Wikipedia has been used as a successful measure of semantic
relatedness between words or text passages.

We will build word and phrase vectors from Wikipedia articles1. This Wiki-
pedia dump contains more than 3 billion words. We will use Word2vec for learn-
ing high-quality word vectors from Wikipedia data sets with billions of words.
An example for vector representation could be as follows: vector(”King”) −
vector(”Man”) + vector(”Woman”) results in a vector that is closest to the vec-
tor representation of the word Queen. [15]

We will test on SemEval STS test data by using this generated vector from
Wikipedia articles. Finally, we will compare our results with our baseline
system. We will also participate in STS evaluation track at SemEval 2015
Task 22. Having good similarity measures on scientific text chunks, we may
use it for our math-aware information retrieval system.

3 New MIaS Architecture with Entailment Modules

Our top-level system architecture is shown in Figure 2. The architecture used
sofar is enriched by three modules: Text-Text Entailment (TE), Math-Math
Entailment (ME) and Text-Math Entailment (TME) modules.

Textual entailment is defined in [9] as: text T is said to entail hypothesis H if
the truth of H can be inferred from T. The task of Textual entailment is to decide
whether the meaning of H can be inferred from the meaning of the T.

For example, the text T = “John’s assassin is in jail” entails the hypothesis
H = “John is dead”; indeed, if there exists one’s assassin, then this person is
dead. On the other hand, T = “Mary lives in Europe” does not entail H = “Mary
lives in US”. Much effort is devoted by the Natural Language Processing (NLP)
community to develop advanced methodologies in TE which is considered
as a core NLP task. Various international conferences and several evaluation
track competitions on TE have been held, notably at PASCAL-Pattern Analysis,
Statistical Modelling and Computational Learning3, Text Analysis Conferences
(TAC)4 organized by the United States National Institute of Standards and
Technology (NIST), Evaluation Exercises on Semantic Evaluation (SemEval)5,
National Institute of Informatics Test Collection for Information Retrieval

1 http://dumps.wikimedia.org/enwiki/
2 http://alt.qcri.org/semeval2015/task2/
3 http://pascallin.ecs.soton.ac.uk/Challenges/
4 http://www.nist.gov/tac/tracks/index.html
5 http://semeval2.fbk.eu/semeval2.php

http://dumps.wikimedia.org/enwiki/
http://alt.qcri.org/semeval2015/task2/
http://pascallin.ecs.soton.ac.uk/Challenges/
http://www.nist.gov/tac/tracks/index.html
http://semeval2.fbk.eu/semeval2.php
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Fig. 2: Scheme of the new MIaS system workflow, enriched by entailment
modules

System (NTCIR)6 since 2005. At each new TE competition, the participating
teams introduced several new features in their TE systems ranging from lexical
to syntactic to semantic methodologies from two-way (i.e. binary-class) to
multi-way (i.e. multi-class) textual entailment classifications in monolingual to
cross-lingual scenario in order to solve the TE problem.

In this work we will investigate into the use of entailment modules for IR.
We will show that Textual and Math entailment plays a significant role for
monolingual IR performance.

The general architecture of Textual Entailment system is shown in Figure 3
on the next page. Text and Hypothesis comparison is represented by compara-
tive analysis; and the entailment decision is made by a classifier that makes use
of a feature vector.

The Textual Entailment system is unidirectional but Semantic Textual Sim-
ilarity is mainly bidirectional. Table 4 on page 115 shows our system result of
Semantic Textual Similarity and compare to the Entailment.

In the MIaS system [21] search can be done by three ways e.g. only text
search, only mathematics formula search and text with mathematics formula

6 http://research.nii.ac.jp/ntcir/

http://research.nii.ac.jp/ntcir/
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Fig. 3: General Textual Entailment architecture

search. During the searching phase, a query can match several terms in
the index. However, one match can be more important to the query than
another, and the system must consider this information when scoring matched
documents. An example of TE module is shown in Figure 4 on the next page.

ME module will compare between Math query and document that con-
tained math formula. For example, x2 + y2 = z2 entails a2 + b2 = c2. We will
implement Math Entailment in Formulae weighting module [21]. We will try to
use Math Entailment module in this phase to find appropriate terms. An exam-
ple of the ME module is shown in Figure 5 on the following page.

TME Module will compare text and math within documents. TME module
not only increases fairness of similarity ranking, but also helps to match a query
against the indexed form by adding new terms for indexing, e.g. formulae for
named entity used to name it. TME module is shown in Figures 4 and 5 on the
next page.

Entailment module will search not only for whole sentences (whole formu-
lae), but also for single words and phrases (subformulae down to single vari-
ables, symbols, constants, etc.). For calculating the relevance of the matched ex-
pressions to the user’s query, entailment module will use a matching technique
of indexed mathematical terms, which accordingly affects scores of matched
documents and thus the order of results.

In our TE system based on lexical similarity we will determine the similarity
between the two texts by our STS module. Additionally, we will compare the
dependency structure between the two texts.

The TE problem can be tackled by various ways like lexical, syntactic and
semantic. Sometimes lexical semantic similarity is not sufficient to solve the TE
problem. In Table 1, for pair Id 5 our lexical semantic similarity system have
given high score of 0.95 but the meaning of text1 and text2 is very different.
In this case dependency structure weighting verb as main decision factor may
solve the problem.

Tree structure of input sentences are widely used by many research groups,
since it provides more information with quite good robustness and runtime
than shallow parsing techniques. Basically, a dependency parsing tree contains
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nodes (i.e., tokens/words) and dependency relations between nodes. Some
approaches simply treat it as a graph and calculate the similarity between
the text and the hypothesis graphs solely based on their nodes, while some
others put more emphasis on the dependency relations themselves. The recent
approaches of syntactic or tree edit models are [10,13,19]. The approach in [11]
based on the tree edit distance algorithm, which contains three basic operators,
insertion, deletion and substitution. Insertion is defined as the insertion of a
node from the dependency tree of H into the dependency tree of T; deletion
is the removal of a node from the dependency tree of T, together with all
its attached children; and substitution is the change of the label of a node
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Table 4: Example of pairs from Task 1 at SemEval 2014
Id Text 1 Text 2 our STS Entailment
1 One young boy is climbing a

wall made of rock
A young child is climbing a
rock climbing wall which is
indoors

0.7871 No

2 A man is phoning A man is talking on the phone 0.8238 Yes
3 John was born on January 15,

1986 in Kolkata.
John was born in 1986 in the
city of Kolkata.

0.7996 No

4 A woman is performing a
trick on a ramp with a bicycle

A woman is jumping with a
bicycle

0.7839 No

5 A brown dog is attacking an-
other animal in front of the
man in pants

A brown dog is helping an-
other animal in front of the
man in pants

0.95 No

in the source tree (the dependency tree of T) into a label of a node of the
target tree (the dependency tree of H). Substitution is allowed only if the two
nodes share the same part-of-speech (POS). The approach in [4] presents a new
data structure, termed compact forest, which allows efficient generation and
representation of entailed consequents, each represented as a parse tree. Rule-
based inference is complemented with a new approximate matching measure
inspired by tree kernels, which is computed efficiently over compact forests.
The approach [24] built a model to solve the entailment problem by using
dependency syntax analysis (by Stanford Parser), lexical knowledge base (e.g.
WordNet), web information (e.g. Wikipedia) and probabilistic methods.

We will generate dependency tree for two texts. Then mapping can be done
in two ways e.g. directly (when entities from hypothesis dependency tree exist
in the text tree) or indirectly (when entities from text tree or hypothesis tree
cannot be mapped directly and need transformations using external resources).
Based on this step we will decide on our entailment resulting implementation.

4 Conclusion and Further Work
We have described an architecture for math-aware information retrieval that
employs textual and math entailment. We have described our further research
directions: distributional approaches that we will test for entailment modules.
We want also train distributional semantics representation for mathematical
formulae, and test to which extent their vectors may be used to approximate
their meaning. Finally, we plan to use SEPIA evaluation tool and NTCIR’s Math
task [12] data to evaluate the improvements, and eventually use it in the digital
mathematics libraries as EuDML [6] or planned GDML [8].

Acknowledgement This work was supported by an ERCIM Alain Bensoussan
Fellowship 2014–15 and Masaryk University. Any opinions, findings, and
conclusions expressed here are those of the authors and do not necessarily
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Abstract. In this paper, we present a new free resource for comparable
Czech question answering evaluation. The Simple Question Answering
Database, SQAD, contains 3301 questions and answers extracted and pro-
cessed from the Czech Wikipedia. The SQAD database was prepared with
the aim of a precision evaluation of automatic question answering sys-
tems. Such resource was currently not available for the Czech language.
We describe the process of SQAD creation, processing of the texts by au-
tomatic tokenization (Unitok) and morphological disambiguation (De-
samb) and successive semi-automatic cleaning and post-processing.
We also show the results of a first version of Czech question answering
system named SBQA (syntax-based question answering).

Keywords: question answering, Simple Question Answering Database,
SQAD, syntax-based question answering, SBQA

1 Introduction

The question answering (QA) field has a significant potential nowadays.
Systems that are capable of answering any possible question can be widely
used by general public to answer questions about the weather, public transport
etc. In specialized applications, question answering can be used in medicine to
speed up the process of fitting the patient symptoms to all possible illnesses.

Nowadays, several perspective question answering systems appeared, such
as the IBM’s Watson [1,2] that had a big success in popular television compet-
itive show Jeopardy!1. Many QA systems are orientated on a specific domain
and are always able to answer only simple questions [3,4,5,6].

Question answering systems employ tools that process the input question
than go through a knowledge base and provide a reasonable answer to the
question. The presented SQAD database will help to measure and improve
accuracy of QA tools as it offers all relevant processing parts, i.e. the source
text, the question and the expected answer.

1 Jeopardy! is an American television show that features a quiz competition in which
contestants are presented with general knowledge clues in the form of answers, and
must phrase their responses in question form.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 121–128, 2014. c○ NLP Consulting 2014

mailto:\protect \T1\textbraceleft xmedved1,hales\protect \T1\textbraceright @fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2014.nlp-consulting.net/
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Original text:
Létající jaguár je novela spisovatele Josefa Formánka z roku 2004.
[Létající jaguár is a novel of writer Josef Formánek form the 2004.]

Question:
Kdo je autorem novely Létající jaguár?
[Who is the author of the novel of Flying jaguar?]

Answer:
Josef Formánek

URL:
http://cs.wikipedia.org/wiki/L%C3%A9taj%C3%ADc%C3%AD_jagu%C3%A1r

Author:
chalupnikova

Fig. 1: Example of a SQAD record

2 The SQAD Database

The Simple Question Answering Database, SQAD, was created in a computa-
tional linguistic course by students. Their task was to choose sections from
Czech Wikipedia articles as a source for different questions and the respective
answers. SQAD contains 3301 records with the following data fields (see Figure 1
for an example):

– the original sentence(s) from Wikipedia
– a question that is directly answered in the text
– the expected answer to the question as it appears in the original text
– the URL of the Wikipedia web page from which the original text was

extracted
– name of the author of this SQAD record

In the first phase, the SQAD database consisted of plain texts. To support
the comparison and development of question answering systems including
SBQA [7] that is presented further in the text, SQAD was supplemented with
automatic morphological annotations. The texts were processed with two
tools: Unitok [12] for text tokenization and Desamb [8] morphological tagger,
which provides unambiguous morphological annotation of tokenized texts (see
Figure 2). Both tools are automatic systems and their accuracy is not 100% thus
they occasionally make mistakes. To obtain high-quality data, the tagged texts
were checked and corrected by semi-automatic and manual adjustments that
are described in the following sections.

3 Adjustments of the SQAD Database

In this section, we describe amendments to the tokenization and tagging as
obtained by Unitok and Desamb processing. Some of the modifications were

http://cs.wikipedia.org/wiki/L%C3%A9taj%C3%ADc%C3%AD_jagu%C3%A1r
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<s>
Kdo kdo k3yRnSc1
je být k5eAaImIp3nS
autorem autor k1gMnSc7
novely novela k1gFnSc2
Létající létající k2eAgMnSc1d1
jaguár jaguár k1gMnSc1
<g/>
? ? kIx.
</s>

Fig. 2: Morphological annotation (consists of form, lemma and tag) of a sentence
“Kdo je autorem novely Létající jaguár? (Who is the author of the novel of Flying
jaguar?)”

a) <s>
1
200
300
</s>

−→

b)

<s>
1 200 300
</s>

Fig. 3: Unitok: a) wrong and b) adjusted tokenization of number “1 200 300”.

systematic and proceeded in bulk over all the records, some of them were part
of manual checking.

3.1 Tokenization Adjustments

During the manual checking of SQAD records, we found that large numbers have
wrong tokenization if they contained whitespace as a thousands separator (see
Figure 3). Therefore we have adapted the matching patterns that Unitok uses
for processing the text to fix this setup.

3.2 Out-of-Vocabulary Words

The system Desamb is used for morphological tags disambiguation according to
the word context. In some cases, the context is too narrow or there is no context
at all so Desamb cannot determine the correct tag. In this case, Desamb returns
“k?” (unknown kind) as the resulting tag. In SQAD, this is specifically true for the
cases, where the answer in the SQAD record contains only a number. Then the
Desamb resulting tag is “k?”. Therefore we have systematically changed such
tags to the “k4” tag for numerals (see Figure 4 for an example).

The Desamb tool is working over the attributive Czech tagset of the Majka
system [9,10]. Majka is based on a deterministic acyclic finite state automaton
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<s>
120 120 k?
</s>

−→
<s>
120 120 k4
</s>

Fig. 4: Desamb: unrecognized number

<s>
Los Los k?
Angeles Angeles k?
</s>
<s>
LA LA k?
</s>

−→

<s>
Los Los k1
Angeles Angeles k1
</s>
<s>
LA LA kA
</s>

Fig. 5: Desamb: unrecognized proper names and abbreviations

(DAFSA) that is created from large morphological database. Despite the cover-
age of more than 30 million Czech verb forms, Majka does not recognize all the
existing words, especially proper names and abbreviations. Thus the resulting
tag on such words is usually “k?”, which means that the system does not con-
tain this word in the database and the context is not long enough to guess the
tag. For such words, we have systematically changed the unknown tag to:

a) “k1” (nouns) for all words that start with an upper case letter, and
b) “kA” (abbreviations) for words that contains only upper case letters, words

ending with dot or words containing dots between upper case letters.

See Figure 5 for the resulting annotation of unknown proper names and
abbreviations.

As we have mentioned above, the SQAD database is extracted from Wiki-
pedia texts, which are multilingual and the texts often contain original forms
of proper names. For example original writing of the name "Tokio" is "東京".
These foreign language words are not included in Majka database thus Desamb
always assigns them the tag for unknown words (“k?”).

To fix the remaining unknown word tags in SQAD, we have extracted all
unknown words into one file keeping the original file name, word position
and unknown word with its lemma and tag from Desamb. This file was
than manually annotated and programmatically applied back to the original
annotated file (see Figure 6).

3.3 Mistakes in Morphological Analysis

In case of unknown words, the Desamb tool can not only leave the word tag
undecided, but if the unknown word has a suitable context, Desamb can “guess”
its lemma and tag even if the word is not present in the Majka database. This
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Original Desamb output stored in file 03text.txt:

Tokio Tokio k1gInSc1
( ( kIx(
jap. jap. kA
東京 東京 k?

Record of unknown word extracted from 03text.txt file:

./0000/03tex.txt|3|東京 東京 k?

Record from 03text.txt with manual changes:

./0000/03tex.txt|3|東京 東京 k1

File 03text.txt with changes:

Tokio Tokio k1gInSc1
( ( kIx(
jap. jap. kA
東京 東京 k1

Fig. 6: Desamb: unrecognized foreign words

works very well when Desamb processes Czech words, however it may cause
mistakes for foreign words. In this case not only the tag is wrong but also the
lemma. For example if we have word "Las" (from proper name "Las Vegas") the
output of Desamb is "Las laso k1gInSc1" (where word laso means lasso).

To repair all these mistakes, we checked all the SQAD database records and
extracted a similar file as in Section 3.2 and corrected the tags in the original
SQAD files.

4 Evaluation

We have used the SQAD database to evaluate the accuracy of a first version
of SBQA, syntax-based question answering system [7]. SBQA was developed
during a master thesis by Matej Pavla at Faculty of Informatics, Masaryk
University. The input of SBQA system is a plain text question which is then
preprocessed by Unitok and Desamb system and passed to SET [11] parser
to identify dependencies and phrase relations within the question. SBQA then
decides the rules for finding the answer in its knowledge base based on a match
on corresponding syntactic structures (hence the “syntax-base” in its title).

The SBQA knowledge base is made also from plain text documents, which
are automatically processed with the same tool chain as the questions (Unitok,
Desamb and SET). As we presented in this paper, the automatically preprocessed
texts contain mistakes. For the purpose of evaluation of the QA part of SBQA, we
have modified its workflow to build the knowledge base from the annotated
SQAD database and not to use the automatic processors.
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Table 1: Evaluation of SBQA system
total questions correct partially correct incorrect not found

3,301 758 60 2,003 480
100% 23% 1% 61% 15%

Table 2: Classification of SBQA errors (on 200 examples)
total questions error in SBQA

system
error in tokenization
or syntax analysis

uncovered phenomena

200 119 43 38
100% 59.5% 24.5% 19%

For the original results see [7]. The current results of SBQA as measured on
the SQAD database are presented in Table 1.

After the evaluation, we have taken 200 questions that are incorrectly
answered by SBQA and manually checked the reason of the mistake. We have
obtained three categories of mistakes that are caused by:

1. errors in implementation of SBQA system
2. errors in tokenization or syntactic analysis
3. phenomena not covered by the current implementation of SBQA system

An overview of the percentage of these error categories is presented in Table 2.
A detailed description of particular error categories can be found in the
following subsections.

4.1 Errors in Implementation of SBQA System

The SBQA system balances between answer correctness and the ability to find
the answer. Because of that the SBQA implementation uses concept of choosing
the answer candidates based on their probability values. On the other hand this
implementation sometimes leads to a wrong evaluation that produces incorrect
answer.

We have identified the following error types that are caused by SBQA
implementation:

– answer in brackets: if the answer of the question is placed in brackets, the
SBQA system nearly always provides incorrect answer

– part of speech requirement: even if the tokenization and syntax analysis is
provided well, the SBQA system does not check the part of speech that is
important for answering the question and the system answers incorrectly

– comparison of dates or numbers: in case of a question, whose answer
needs to perform some date or numeric computations, the system does not
provide the answer (only exact matches are found).
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– wrong question type: as described in [7], SBQA determines for each question
its question type. But sometimes the system provides an answer to the
question with yes/no question type even if the original question is not a
yes/no question.

4.2 Errors in Tokenization or Syntactic Analysis

The SBQA system answers incorrectly in case the tokenization or syntactic
analysis contains mistakes.

There are three types of such errors that appear in the current SQAD database:

– Desamb incorrectly detects sentence boundaries and splits one sentence into
two or more sentences

– Desamb incorrectly tagged a word thus the syntactic analysis is incorrect and
SBQA system cannot derive the required answer

– SET incorrectly parses a sentence and creates an incorrect syntactic tree. This
usually leads to incorrect answer.

4.3 Uncovered Phenomena

The SBQA system has not yet implemented advanced NLP techniques such as
anaphora resolution. Which means that if the answer to the question is in the
sentence that refers to previous text then the answer cannot be found.

5 Conclusions

In this paper we have presented new Czech question answering database
called SQAD. Each SQAD record consists of an annotated question, the annotated
answer, the annotated sentence containing the full answer, Wikipedia URL as
a source of the statement and the author name of this question-answer pair. The
morphological annotation was obtained automatically and manually corrected.
The corrections make SQAD data more precise so they are more suitable for
evaluation of Czech question answering systems.

The SQAD database in its current version is available for download at
http://nlp.fi.muni.cz/projects/sqad.
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10. Jakubícek, M., Kovář, V., Šmerk, P.: Czech morphological tagset revisited. Proceed-
ings of Recent Advances in Slavonic Natural Language Processing 20 (2011) 29–42
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Abstract. This paper describes the methodology and development of
tools for building and presenting a terminological thesaurus closely con-
nected with a new specialized domain corpus. The thesaurus multiplat-
form application offers detailed information on each term, visualizes term
relations, or displays real-life usage examples of the term in the domain-
related documents. Moreover, the specialized corpus is used to detect do-
main specific terms and propose an extension of the thesaurus with new
terms. The presented project is aimed at the terminological thesaurus of
land surveying domain, however the tools are re-usable for other termi-
nological domains.

Keywords: corpus building, thesaurus, terminological dictionary, term
extraction, DEB platform

1 Introduction

Specialists in every field of work use their own domain-specific vocabulary and
it is desirable to share the same terminology amongst the professionals. De-
tailed domain terminology is not usually included in general language dictio-
naries, thus specialized terminological dictionaries are needed. With the need to
share information unambiguously in different languages, terminological dictio-
naries link original terms to their translations. The taxonomical ordering of the
terminology is described by term relations such as synonymy or hyperonymy
and hyponymy. The information is presented and visualized in a way that helps
the readers (both specialists and general public) to understand the term mean-
ing and usage in contexts. If the data are encoded properly, the system enables
automatic processing and integration of the data in third-party applications.

Natural language is still evolving and new words keep appearing or the us-
age and meaning of words is changing. This evolution is even more noticeable
in specialized vocabularies [1]. The thesaurus system thus can employ sophisti-
cated methods of detecting emerging words and distinct new terms in the given
domain by processing synchronous domain-oriented corpora.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 129–137, 2014. c○ NLP Consulting 2014
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The Natural Language Processing Centre (NLP Centre) at the Faculty of In-
formatics, Masaryk University in cooperation with the Czech Office for Survey-
ing, Mapping and Cadastre is developing a system for building and extensions
of specialized terminological thesaurus for the domain of land surveying and
land cadastre. The project consists of two interconnected parts – an applica-
tion to create, edit, browse and visualize the terminological thesaurus, and the
tools to build large corpus of domain oriented documents with the possibility
to detect newly emerging terms, or terms missing from the thesaurus. Already
available tools for corpus building and term extraction and the platform for
dictionary applications are utilized. During the project, we are enhancing the
corpus tools (mainly to support parallel multilingual corpora), building the the-
saurus web application (not limited to single domain), and developing methods
to inter-connect the domain corpus with the terminological thesaurus.

The project is currently in its first phase. We have built the Czech corpus
of land surveying oriented documents and we are able to detect domain
specific terms. We have also developed the multiplatform web-based editor and
browser thesaurus application based on the dictionary writing platform DEB.
Although this project aims to build and manage the terminological thesaurus
of land surveying domain, the tools may be re-used for any other domain
dictionary, thus stimulating the sharing of information and general awareness
of the selected domain.

2 Specialized Corpus and Term Extraction

To build the specialized corpus for land surveying and geoinformation domain,
we have followed the principles designed for creation of large corpora extracted
and processed from web data. The data for the corpus were gathered from
publicly available online resources utilizing two different methods developed
by NLP Centre.

Firstly, a set of main websites related to the land surveying, the cadastre of
real estates, and related topics was enlisted. See Table 1 for details regarding
the sources.

Secondly, based on the content of these root websites a broader set of doc-
uments from 1,063 websites utilizing the WebBootCat tool [3] was obtained.

Table 1: Website resources for the specialized corpus
Website Documents Tokens Unique documents Unique tokens
www.cuzk.cz 16,405 3,137,795 15,289 340,943
www.vugtk.cz 4,659 6,419,950 3,212 4,386,238
csgk.fce.vutbr.cz 241 77,255 198 58,561
www.kgk.cz 417 44,814 414 29,890
www.sfdp.cz 192 35,287 106 11,279
www.czechmaps.cz 94 108,506 90 98,914
www.zememeric.cz 8,634 6,100,751 6,200 2,638,308
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Fig. 1: Most frequent nouns in the land surveying corpora.

This method needs a set of “seed words” to search the web for relevant docu-
ments. We used the main domain terms obtained from existing publicly avail-
able terminological dictionary [12] as seed words. The resulting corpus is used
for extraction of new suggested terms for inclusion in the thesaurus. See Ta-
ble 2 for detailed information on downloaded documents and their distribu-
tion amongst different sub-domains (as divided in the available terminilogical
dictionary) covered by the thesaurus.

Non-textual and low quality content was removed from the downloaded
documents, utilizing the Justext tool [2]. Subsequently, duplicate documents or
parts (e.g. paragraphs) of the documents were purged with the Onion tool [2].

Following the corpus creation, a list of “candidate terms” (proposals to
include into the thesaurus) was prepared. The candidate terms were extracted
from the specialized land surveying and geoinformation corpus by employing
the process of corpora comparing and keywords extraction [4,5]. Frequencies

Table 2: WebBootCat resources for the specialized corpus
Domain Documents Tokens Unique documents Unique tokens
GPS system 118 250,833 117 221,315
metrology 144 867,156 144 619,482
photogrammetry 42 244,212 42 227,731
geographical information 55 805,059 55 550,681
mapping 213 858,575 212 722,080
cartography 368 1,358,973 365 1,124,708
cadastre of real estates 260 970,951 259 776,497
geodesy 190 575,381 189 483,679
theory of errors 75 258,345 75 218,809
instrumental technology 115 187,106 113 173,984
engineering surveying 114 286,846 113 242,857
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Fig. 2: Browsing the thesaurus, with detailed information for one term.

of words and named-entities in the specialized corpora are compared to the
frequencies of the same phrases in a general language corpus (in this case, the
biggest Czech corpus developed in NLPC – czTenTen12 [6]). The best candidate
terms have the highest frequency quotient [7].

3 DEB Platform

Utilizing the experience from several lexicographic projects, we have designed
and implemented universal dictionary writing system that can be exploited in
various lexicographic applications to build large lexical databases. The system
is called Dictionary Editor and Browser, or DEB [8], and has been used in many
lexicographic projects, e.g. for development of the Czech Lexical Database [9],
or currently running Pattern Dictionary of English Verbs [10], and Family
names in UK [11].

The DEB platform is based on client-server architecture, which brings along
a lot of benefits. All the data are stored on a server and considerable part of
functionality is also implemented on the server, while the client application can
be very lightweight.

This approach provides very good tools for editor team cooperation; data
modifications are immediately seen by all the users. Server also provides
authentication and authorization tools.

4 Thesaurus Building

Although the main aim of the thesaurus development is publishing the autho-
rized specialized terminology and its updates both to the experts, and general
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Fig. 3: Editing the term entry.

public, the thesaurus will contain broad vocabulary of related terms. Users may
search even for unofficial terms and thanks to the relations between the terms
and the detailed information on the source of given term, user will find the
related terms and links to the recommended official variant.

To build the thesaurus covering broad domain vocabulary, several resources
are combined. In the first stage, the current authorized terminological dictio-
nary [12] (containing almost 4,000 terms’ definitions and translations, but does
not offer the taxonomy network) was combined with the hypero/hyponymic
tree of over 6,800 entries (containing hyponymic relations, but no detailed in-
formation about terms) and by 450 candidate terms extracted from the domain
corpus.

The first two resources were available in HTML form, tagging some parts
of entry structure, but still leaving a lot of text in unstructured format. It was
necessary to tidy up the data and convert resources to the unified XML format

Table 3: Thesaurus size statistics
total number of terms 8,783 English translations 8,873
hyponymic relations 10,020 German translations 3,936
meaning explanations 4,124 Slovak translations 3,511

Russian translations 2,762
French translations 3,936
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Fig. 4: Corpus evidence for usage of the selected term (teodolit).

for the database storage. Some of the terms were shared by both dictionaries,
thus combined term entries were created, containing both detailed information
on terms, and the term relations. See Table 3 for more details regarding the
current size of the thesaurus.

In the next stage, the thesaurus will be expanded even more by including
several resources:

– appropriate parts of the GEMET1 (General Multilingual Environmental
Thesaurus),

– regularly updated Registry of Territorial Identification (RUIAN)2,
– automatically extracted multi-lingual terms,
– suggestions from the public users.

5 Editing Tool

The thesaurus editing tool is implemented as a client-server application, with
DEB server providing the database and management back-end. The client-
side application is a multiplatform web application accessible in any modern
browser, built utilizing open-source technologies – JQuery3 and SAPUI54

libraries for graphical interface. The client and the server communicate using
standardized interface over HTTP, currently JSON format is supported and
support for SOAP web-service protocol will be added in the final version.

1 http://www.eionet.europa.eu/gemet
2 http://www.cuzk.cz/ruian/
3 http://jquery.com/
4 https://sapui5.netweaver.ondemand.com/

http://www.eionet.europa.eu/gemet
http://www.cuzk.cz/ruian/
http://jquery.com/
https://sapui5.netweaver.ondemand.com/


Semiautomatic Building and Extension of Terminological Thesaurus 135

Fig. 5: Entry relations visualized.

The standardized application interface also allows an integration of third-
party applications that would like to re-use the thesaurus data. One of the
intended use-cases is the integration into the Geoportal5, where the terms are
to be used for the document metadata and categorization.

The thesaurus web application itself provides a graphical interface for
browsing the hyponymic tree (see Figure 2). Out of the several possible
visualizations of the tree, the expanding multi-level tree was selected, although
it may not display all the relations in a proper graph form, it is much more
intuitive for the users. If the term has more hyponyms, it is displayed multiple
times in the tree structure. To graphically visualize the relations of a term,
a graph of hypernyms, synonyms, and other related terms is displayed (see
Figure 5).

For each term, a detailed description is given, including meaning explana-
tion, translations, or accepted variants. When more sources are incorporated
in the thesaurus, the reliability of each source and revision history will be pre-
sented to the users. Source reliability follows the rating scale of the Office for
Surveying – the most reliable are terms authorized by the terminological com-
mittee, followed by terms used in scientific journals, with the terms made up
by general public at the bottom of the scale. Users or third-party applications
may decide which sources or terms they prefer to work with.

To get a better picture of the term and its usage, extended information from
the corpus are presented. Users may consult full examples (see Figure 4) or
related words from the corpus (see Figure 6).

6 Conclusions and Future Work

In the next phase of the project, we plan to extend multi-lingual and multi-
source aspects of the thesaurus.

5 http://geoportal.cuzk.cz/

http://geoportal.cuzk.cz/
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Fig. 6: Related words for the selected term (geodet).

Based on the successful evaluation of the Czech specialized corpus for the
land surveying domain, we will build corpora in more languages – English,
French, German, with the possibility of other languages, depending on the
availability of source documents. We will provide automatically extracted
terminology from these corpora as the suggestions for terminology translation.

Hand in hand with adding more sources for the thesaurus terms, the editing
and browsing application will offer options for filtering the terms based on the
source reliability and authorization status and periodic semi-automatic imports
from authorized sources.

Acknowledgements This work has been partly supported by TACR in the
project TB02CUZK004.
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ústav geodetický, topografický a kartografický, v.v.i. (2012)





Mapping Czech and English Valency Lexicons:
Preliminary Report
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Abstract. We describe here a very first attempt to connect two valency
lexicons: Pattern Dictionary of English Verbs (PDEV) and VerbaLex. Both
lexicons contain verbs together with their syntactic structure (arguments
of the verbal predicate) and semantic restrictions (semantic types typical
for a given verb argument). The lexicons are similar in overall but differ
in details since their formalisms are tailored for the respective languages.
They also differ in a way they have been built: whilst the former resource
has been built using Corpus Pattern Analysis methodology the latter has
been built upon previous datasets Brief, Vallex and Czech WordNet. We
present a preliminary work on linking English patterns in PDEV with
their Czech equivalents: frames in VerbaLex.

Keywords: valency, lexicon, PDEV, CPA, VerbaLex, ontology, WordNet

1 Introduction

Valency lexicons are lexical resources containing valency frames (patterns) of
individual verbs. The frames contain information about verb arguments (such
as direct and indirect object, subject), their morphosyntactic properties (such as
cases in Czech) and their semantic roles (such as agens, patient, instrument).

For Czech there are two valency lexicons, one is Vallex [1] by Žabokrtský
(approximately 6,000 Czech verbs) based on formalism of Functional Genera-
tive Description (FGD) and VerbaLex [2] developed by Hlaváčková et al. (ap-
proximately 10,500 Czech verbs). For English we use PDEV by Hanks et al. [3].

The mentioned valency lexicons for Czech basically share the morphosyn-
tactic information (about cases and adverbial phrases) but they differ in their
inventories of the semantic roles: Vallex uses about 40 roles, VerbaLex uses com-
plex roles consisting of the main roles (48) and selectional restrictions (900).

In the PDEV, the description of the morphosyntactic properties of the
verb arguments is different from the Czech lexicons as English displays the
fixed word order (SVOMPT). The semantic roles and types are based on
Pustejovsky’s shallow ontology containing 228 items.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
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140 Vít Baisa, Karel Pala, Zdeňka Sitová, and Jakub Vonšovský

Our goal is to exploit the overall similarity (structure of frames and patterns)
and propose possible equivalents of English patterns and Czech frames. In this
paper we present a preliminary analysis of correspondences between the two
lexical resources. We believe that the resulting translation valency dictionary
would be very useful resource for natural language processing tasks, mainly
for machine translation.

2 Pattern Dictionary of English Verbs

The PDEV1 [4] is a result of a long-term work by Patrick Hanks and his
colleagues. Currently, it is being developed within project Disambiguation of
Verbs by Collocation2 (DVC) at University of Wolverhampton.

The method of building the lexicon is based on finding corpus evidence: the
English verb patterns are created only when observed in a sample of corpus
examples for a given English verb. This technique of Corpus Pattern Analysis
(CPA) was invented by Patrick Hanks [4]. The corpus used in CPA is the written
part of British National Corpus.

The focus of CPA is on the prototypical syntagmatic patterns with which
verbs in use are associated. Verb patterns in PDEV consist not only of the basic
argument structure or valency structure of each verb (typically with semantic
values stated for each of the elements), but also of subvalency features, where
relevant, such as the presence or absence of a determiner in noun phrases
constituting a direct object. For example, the meaning of take place is quite
different from the meaning of take his place. The possessive determiner makes
all the difference to the meaning in this case.

3 VerbaLex

The Czech lexicon3 [2] has been initially based on the following resources:

1. the starting repertoire of the verbs has been taken from syntactic lexicon of
verb valencies called BRIEF by Pala and Ševeček [5],

2. Czech WordNet valency lexicon developed within the Balkanet project.
3. The tool for handling the structure of the lexicon has been partially inspired

by the editor developed for the above-mentioned Vallex. A new editor has
been developed and is used for editing and browsing VerbaLex.

The verbs in VerbaLex are grouped into synsets in the same way as
in Princeton WordNet [6]. Approximately 8,000 of them are linked to the
equivalent English WordNet synsets.

1 http://www.pdev.org.uk
2 http://clg.wlv.ac.uk/projects/DVC/
3 http://nlp.fi.muni.cz/verbalex/html2/generated/alphabet/

http://www.pdev.org.uk
http://clg.wlv.ac.uk/projects/DVC/
http://nlp.fi.muni.cz/verbalex/html2/generated/alphabet/
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4 Related work

We have already mentioned Vallex as a similar resource for Czech. Framenet
for English [7] should be mentioned as well though it is not only a verb lexicon.
Valency lexicons are available for a number of languages: German [8], French,
Italian, Russian [9], Polish [10] and others.

There have been some attempts at linking valency lexicons, e.g. [11] de-
scribes their ongoing efforts in aligning two valency lexicons PDT-VALLEX
and EngValLex on the basis of a parallel treebank. The token alignment is done
manually by annotators whose task is to go through the verb occurrences in the
treebank, collect a typical representative of a frame mapping and control and
decide potential conflicting cases. Once collected, the frame mapping is auto-
matically applied to all its other potential representantives.

Related to our effort is also EngValLex [12]—transformation of the Prop-
Bank [13] lexicon to the structure of Vallex. After linguistic comparison of Prop-
Bank and Vallex, PropBank was automatically converted to FGD-compliant
form which was later manually refined. The method is as follows: first, all slots
have been renamed using functors, second, the non-obligatory free modifiers
have been deleted and optional elements marked. Third, frames correspond-
ing to the same verb sense have been merged. Fourth, the lexicon has been re-
fined in the process of treebank annotation by addition of other frames, whole
verb lemmas, and also, the PropBank adapted frames were corrected manu-
ally with respect to the language data available in the English part of parallel
treebank. [11]

5 Analysis of differences and similarities

For this study, the verbs have been selected in the way that there was only
one pattern in PDEV which helps the translation into VerbaLex and avoids
ambiguity. There are 313 single-pattern verbs in PDEV. For some of them it
is not possible to find Czech translation equivalents,4 thus they have been left
out from further analysis.

There are some features (grammatical categories) in Czech that do not have
their respective counterparts in English. One of them is category of aspect: in
the regular cases in which the members of an aspect pair preserve the same
meaning, the category of aspect can remain in the frames, as in pair like zrychlit,
zrychlovat (to accelerate). Similar category that should be preserved is category
of case (7 grammatical cases in Czech).

Some verbs in PDEV which simply do not have direct translation equiva-
lents in VerbaLex (calcify, demystify, ignore, . . . ) are excluded from further con-
siderations. On the other hand, there are many verbs in VerbaLex for which we
cannot find the translational equivalents in PDEV because it is too small so far5

4 This is caused by special terminology from very limited domains in BNC.
5 There are roughly 1,100 completed verbs in PDEV.
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or because many complex Czech verbs can not be translated on lexical level, for
example: povytáhnout (to pull something out a bit), poposednout si (to move on a
bit) etc.

If we look at PDEV and VerbaLex we can observe that their ontological
structures are considerably different which complicates the mapping. The on-
tology in VerbaLex is partly based on the Top Ontology used in EuroWord-
Net [14] and on selected literals from Princeton WordNet. In PDEV Shallow
Ontology by Pustejovsky [15] is used. For example, Group class in PDEV con-
tains subclasses Human Group, Vehicle Group, Animal Group, Physical Object
Group which have their own respective categories in VerbaLex. Only very
few classes inherit their mapping such as PDEV Machine → <artifact:1>
in VerbaLex. This means we have to uncover relations between every single
class by analysing more and more words. Nevertheless, so far it seems we
can go up in the classes to find a match such as for water which corresponds
to SUBS<liquid substance:1> in VerbaLex and has its own class in PDEV. In
one of our analyses it maps SUBS<liquid substance:1> to Entity having Water
class as one of its descendants.

From 21 analyses, 9 patterns were mapped without any problems from one
lexicon to another. 10 patterns were mapped with some imperfections such
as missing frames in PDEV (for example out of 5 frames in Verbalex only 2
had a match in PDEV) or small mismatches in frames (obligatory requirement
in Verbalex). Those small mismatches in frames which happened in 2 cases
could be somehow penalized in an automatic tool. Only one record was
unmappable (burrow) because frames were mismatched (Verbalex did not cover
case of burrowing animals) and one record was not present at all in Verbalex
(disregard). For some examples, see Table 1.

Table 1: Some mapping examples, PDEV on left, VerbaLex on right
Animate physical object

Human Group | Human AG<person|child|...>

Animal | Bird (all animals) AG<animal>

Institution GROUP<institution>|AG<person>

Precise mappings
Machine ART<artifact>|INS<device>

Body Part PART

Artwork COM<written communication>

Fluid | Beverage SUBS<liquid substance>

Imprecise mappings (one of possible mappings)
Action MAN,how

Activity ACT<act>

Eventuality Event

Entity GROUP<institution>

Physical Object OBJ

Anything causes Anything REAS<reason>,díky,kvůli
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In the mapping, AG (agens) can also be PAT (patient), ENT (entity) or SOC
(associate) thus Human would map to AG<person> as well as to PAT<person>.

Record analysis example

VerbaLex frames (VN) and PDEV patterns (PN) are in typewriter typeface.
PDEV pattern implicatures are in italics.

rozmazlovat (cosset)
[V1] AG <person:1> V PAT<person:1>
[V2] AG <person:1> V PAT<person:1> (ACT<act:2>)
[P1] [[Human 1]] cosset [[Human 2]]

[[Human 1]] cares for [[Human 2]] in an excessively protective and fussy way
Comment: exact match.

zakrýt (blanket)
[V1] (překrýt) OBJ <object> V OBJ<object>
[V2] (překrýt) OBJ <object> V OBJ<object> PART<part>
[V3] AG<person> V PAT<person> (ART<covering>)
[P1] [[Stuff|{PhysicalObject1=PLURAL}]] blanket

[[Location|PhysicalObject2]]
[[Location|Physical Object 2]] becomes covered by a layer of
[[Stuff|Physical Object 1 = PLURAL]]

Comment: Physical Object is mapped to OBJ<object> here, but in fact it is still
quite general class.

zbankrotovat (bankrupt)
[V1,2] ENT<person|instit> V (REAS<reason>díky,kvůli)
[P1] [[Human1|Instit1|Event]] bankrupt [[Human2|Instit2]]

[[Human1|Instit1|Event]] causes [[Human2|Instit2]] to not have enough money
to pay his or her or its debts
Comment: Human 2 | Institution 2→ to <person>|<institution>. REAS<reason>
maps to A causes B.

6 Discussion & conclusions

So far we have uncovered several promising relations between the two lexicons.
Unfortunately, as their ontology structures are completely different, we would
need to analyse tens or hundreds possible pairs to get a more complex image
of possible mappings. So far from about 20 records we are already able to map
animate physical objects and some of inanimate objects which together form
the biggest group in PDEV. This is a basis for further investigation and for a
rule-based approach to proposing and linking possible equivalents from PDEV
and VerbaLex. The main problems consist of the following:
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1. the ontologies used in PDEV and VerbaLex are structured differently, there
is a shallow ontology in PDEV and a sort of the Aristotelian ontology based
on Top Ontology from EuroWordNet in VerbaLex.

2. Basic items in VerbaLex are synsets containing usually more than one verb
lemma, whereas in PDEV the basic items are the individual verb lemmas.
This, however, can be handled by obtaining appropriate lists from VerbaLex
(by expanding and filtering the verb list).

The comparison of the two ontologies is a separate task that should be further
investigated and deserves a separate paper.

We hope that in the near future we will be able to propose and implement an
automatic tool with high accuracy of PDEV patterns translations of VerbaLex
frames and vice versa.
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6. Fellbaum, C.: WordNet. Wiley Online Library (1998)
7. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The berkeley framenet project. In: Proceedings

of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics-Volume 1, Association
for Computational Linguistics (1998) 86–90

8. Hinrichs, E.W., Telljohann, H.: Constructing a valence lexicon for a treebank of
german. In: Proceedings of the Seventh International Workshop on Treebanks and
Linguistic Theories. (2009) 41–52

9. Lyashevskaya, O.: Bank of russian constructions and valencies. In: LREC. (2010)
10. Przepiórkowski, A.: Towards the design of a syntactico-semantic lexicon for polish.

In: Intelligent Information Processing and Web Mining. Springer (2004) 237–246
11. Šindlerová, J., Bojar, O.: Building a bilingual vallex using treebank token alignment:

First observations. In: Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10). (2010)

12. Cinková, S.: From propbank to engvallex: Adapting the propbank-lexicon to
the valency theory of the functional generative description. In: Proceedings
of the Seventh International Conference on Language Resources and Evaluation
(LREC’06). (2006)

13. Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics 31(1) (2005) 71–106



Mapping Czech and English Valency Lexicons: Preliminary Report 145

14. Vossen, P.: A multilingual database with lexical semantic networks. Springer (1998)
15. Rumshisky, A., Hanks, P., Havasi, C., Pustejovsky, J.: Constructing a corpus-based

ontology using model bias. In: FLAIRS Conference. (2006) 327–332





Tools for Fast Morphological Analysis
Based on Finite State Automata

Pavel Šmerk

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

smerk@fi.muni.cz

Abstract.
The paper presents a new implementation of some of Jan Daciuk’s
algorithms and tools for morphological analysis based on finite state
automata [1]. In particular, we offer a reimplemented version of the
tool which builds the automata from an input set of strings and of the
tool which performs the morphological analysis itself. In addition to 8-
bit versions we also offer “Unicode-aware” versions with the Unicode
characters encoded directly in the arcs of the automaton. The new
implementation is faster than the original one and its code is much more
simple and straightforward.

Keywords: morphological analysis, minimal deterministic finite state
automata

1 Introduction

Computational morphological analysis is one of the first steps in the automatic
treatment of natural language texts. Just after splitting the processed text
into words we usually need a tool which for each such word returns its
possible corresponding lexical entries (lemmata) and a relevant grammatical
information. For languages with limited compounding and with morphology
realized mainly by changes at the end of the word (Slavic languages can be
taken as an example), it is possible to describe their morphology by means of a
simple list of all words (word forms) and their possible interpretations and to
let the morphological analyzer only search this list for each input word.

Of course, it would not be feasible to search such a list directly due to its
huge size. However, the list can be viewed as a finite (formal) language and
consequently it can be represented by a minimal deterministic acyclic finite
state automaton, which can be pretty small. The morphological analyzer then
only follows a path in the automaton according to letters of the analyzed word
and, if a corresponding path exists, returns all possible continuations of this
path as a result.

In the following section we describe the input data format and illustrate
how the morphological analysis works. In the next section we present results

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 147–150, 2014. c○ NLP Consulting 2014

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2014.nlp-consulting.net/


148 Pavel Šmerk

of newly reimplemented tools and finally we discuss some possible future
modifications.

2 Data for morphological analysis

The data for morphological analysis are simply a list of all combinations of
recognized input strings and corresponding outputs of the analyzer, where
pairs of two words are encoded as pairs formed by the first word and a
difference between the words [2]. For example, in the following part of data
for word form→ lemma + tag analysis (with the original data on the right side
and the encoded form on the left side)

ježek:A:k1gMnSc1 ← ježek:ježek:k1gMnSc1
ježka:Cek:k1gMnSc2 ← ježka:ježek:k1gMnSc2
ježka:Cek:k1gMnSc4 ← ježka:ježek:k1gMnSc4
krtek:A:k1gMnSc1 ← krtek:krtek:k1gMnSc1
krtka:Cek:k1gMnSc2 ← krtka:krtek:k1gMnSc2
krtka:Cek:k1gMnSc4 ← krtka:krtek:k1gMnSc4

the (first) colon is a delimiter between the possible inputs and corresponding
outputs and the letters A and C as the first and the third letters of the alphabet
mean “to get the lemma delete n-1 (i.e. 0 or 2, respectively) last characters from
the word form and then attach the rest of the string (i.e. empty string or ek,
respectively)”. For example, the word form krtek will be analyzed as a lemma
krtek with a morphological tag k1gMnSc11 and a word form krtka as a lemma
krtek with morphological tags k1gMnSc2 or k1gMnSc42.

Such a list is then represented as a minimal deterministic acyclic finite
state automaton using Jan Daciuk’s algorithms for incremental building of
minimal DAFSAs [1]. The following graph corresponds to the non-minimized
automaton (trie)
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and the second graph corresponds to the minimized automaton used for the
morphological analysis.
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This representation dramatically reduces the size of the data (some particu-
lar figures can be seen later in Table 1). The lookup is then very simple: if the
analysed string concatenated with the delimiter is found in the automaton, then
each possible remaining path to a final state of the automaton encodes one of
possible analyses.

It means that there is no “real” analysis as any sophisticated algorithm
above some grammar model or a system of paradigms, but whole analysis is
only a simple — and therefore fast — dictionary search.

3 Experiments and results

3.1 Building the data for morphological analysis

We demonstrate our results on four sets of data. English and Russian morpho-
logical data are from the project FreeLing, the data for Czech are ours. We com-
pare our new implementation with the original Daciuk’s implementations3 and
with Java reimplementation of David Weiss4 from project Morfologik (it also of-
fers a more compact format at a price of a greater build time, for details refer
to [3]). For the purpose of comparison, our implementation produces binary
identical output (except for custom header) as the original Daciuk’s fsa_build
built with -DFLEXIBLE -DNEXTBIT -DSTOPBIT compile options. The first table
describes the data sets and in the last column is the size of the resulting automa-
ton (both input and output sizes are in bytes).

Table 1: Data sets used in the experiments.
data set input size words (lines) output size

EN 1,417,920 88,652 244,764
RU 114,605,988 2,844,516 3,639,960
CZ free 105,001,670 3,393,080 931,594
CZ full 828,973,970 27,764,093 3,795,423

The second table presents build times for the three compared tools.

Table 2: Build times in seconds.
data set fsa_build morfologik new implem.
EN 0.24 0.59 0.08
CZ free 12.63 7.50 4.19
RU 26.04 10.19 9.41
CZ full 121.41 57.21 41.71

3 www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html,
version 0.51

4 http://sourceforge.net/projects/morfologik/, version 1.9.0

www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html
http://sourceforge.net/projects/morfologik/


150 Pavel Šmerk

3.2 Morphological analyzer and UTF-8 versions

We also offer a new implementation of morphological analyzer. Unfortunately,
we were not able to make fsa_morph case conversions work even with Daciuk’s
original language files, thus it is difficult to compare analysis times in real
world scenarios. If we changed our analyser to immitate (somewhat broken)
fsa_morph output for 10 million Czech words from corpus, we are ca. 20 %
faster (12.51 s × 15.25 s).

Daciuk’s tools allow to be compiled with UTF-8 support, but it requires the
user to describe the case conversions and diacritics adding/removal. We have
UTF-8 variants of our tools which works with automata with UTF-8 labels and
our case conversions and diacritics restoration follows the Unicode standard,
which means one solution for all languages.

Except for speed, another advantage of our solution is much shorter and
straighforward code. It is not easy to make a fair comparison, but, for example,
files needed for fsa_build have more than 200 kB in total, whereas the code of
our new implementation has less than 20 kB. It is obvious that in case of such a
huge difference it is easier to maintain, adjust and further develop the shorter
code.

The new tools are accessible from http://nlp.fi.muni.cz/ma.

4 Future work

The new tools are ready to use and the presented results are promising,
but it is still a work in progress. We plan to further reduce both time and
final size of the automata construction. We want to employ some variable
length encoding of unicode codepoints, numbers and addresses (similar to [1],
but computationally simpler one). We suspect Daciuk’s “tree index” used to
discovering already known nodes during the automaton construction to be
slow for large data and we hope that simple hash will decrease the compilation
time significantly.
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