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Abstract. Cross-lingual word embeddings have been a popular approach
for inducing bilingual lexicons. However, the evaluation of this task varies
from paper to paper, and gold standard dictionaries used for the evalua-
tion are frequently criticised for occurring mistakes. Although there have
been efforts to unify the evaluation and gold standard dictionaries, we pro-
pose a new property that should be consideredwhen compiling an evalua-
tion dataset: size. In this paper, we evaluate three baselinemodels on three
diverse language pairs (Estonian-Slovak, Czech-Slovak, English-Korean)
and experiment with evaluation datasets of various sizes: 200, 500, 1.5K,
and 3K source words. Moreover, we compare the results with manual er-
ror analysis. In this experiment, we showwhether the size of an evaluation
dataset impacts the results and how to select the ideal evaluation dataset
size. We make our code and datasets publicly available 1

Keywords: Cross-lingual word embeddings, bilingual lexicon induction,
evaluation dataset’s size.

1 Introduction

Cross-lingual word embeddings (CWEs) have drawn attraction among re-
searchers due to their ability to connect meanings across languages. CWEs en-
able the alignment of two (or more) sets of independently trained monolingual
word embeddings (MWEs) into one shared cross-lingual space, where similar
words obtain similar vectors [18].

Given this property, they have proven useful in many NLP applications, for
instance, document classification [16], machine translation [4,6] or language
learning [1].

A broadly usedway to evaluate thesemodels is through the bilingual lexicon
induction (BLI) task. In this task, the objective is to find top k target words
for a source word whose word vectors are the closest in the aligned vector
space. This is achieved typically by computing cosine similarity between the
1 https://github.com/x-mia/Eval_set_size
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source and target word vectors. Then, the retrieved word pairs are compared
to those occurring in the evaluation dataset, often referred to as gold-standard
dictionary [18].

However, the evaluation process and evaluation datasets are not unified, and
they vary from paper to paper, using various training parameters, evaluation
criteria, and evaluation datasets [17,14,3]. This obstructs our ability to accurately
assess the results, monitor any progress in new models, and compare models
with each other.

Moreover, the most popular evaluation datasets MUSE [7] are often criticised
since they were compiled automatically and contain much noise in the form
of occurring mistakes, such as inflected word forms (wave, singular - Wellen,
plural, German dataset), a different part of speech (darkness, noun - temné, dark,
adjective, Slovak dataset), same word translations (android - android, Korean
dataset) [9]. They often have disproportional part-of-speech (POS) distribution,
where a quarter of data consists of proper nouns that do not carry any lexical
meaning and cannot indicate the performance adequately. For example, Barack
Obama, Skype, Bruno, Wisconsin, etc. [15].

Some efforts have focused on uniting the evaluation by investigating how
different training parameters influence the results [10]. Furthermore, some stud-
ies suggest consolidating the evaluation datasets through equal POS representa-
tions [15,13]. Nonetheless, other factors and properties of the evaluation dataset
should also be considered.

One of them and one of the unifying steps is determining the size of the
evaluation dataset. MUSE evaluation datasets contain 1.5K source words, which
have become a standard for the BLI.

In this paper, we investigate whether the number of source words in the
evaluation dataset impacts the results. We explore how many source words are
enough to assess the quality of the model. Our motivation is to study whether
we can use fewer source words to create a high-quality evaluation dataset that
reflects the model’s performance precisely while minimising the time and effort
of the human annotators to compile it.

We evaluate three popular baselineCWEmodels, i.e.,MUSE [7], VECMAP [2,3],
RCLS [14] on three diverse language pairs: distant language pair (Estonian-
Slovak), close language pair (Czech-Slovak), and language pair that do not
share a script (English-Korean). We utilise evaluation datasets of different sizes:
200, 500, 1.5K, and 3K source words, and observe how the results change. We
compare the results against human performance to ensure the precise reflection
of the resulting quality.

Our contribution is manifold:

– Weprovide an evaluation of three common baselinemodels with evaluation
datasets of various sizes.

– We set the appropriate number of sourcewords for the efficient, high-quality
evaluation dataset that is less time-consuming to compile and indicate
accurate results.
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– We propose another unifying property for evaluation datasets to make the
evaluation process comparable and reproducible for other researchers.

Our paper is structured as follows. In Section 2, we present the details of
baselines and training, our datasets and the metrics used. In Section 3, we
evaluate the models with datasets of various sizes, show the outcomes and
discuss the results. Finally, we offer concluding remarks in Section 4.

2 Bilingual Lexicon Induction

The BLI task includes several aspects, such as evaluation datasets used, evalu-
ation metrics, and selected baselines and training. We introduce them in this
section.

Evaluation Datasets. Since we wanted to assess only the impact of the size,
the aim was to make each size group of source words as similar as possible.

The Estonian-Slovak (et-sk) evaluation dataset was compiled using the
Estonian-Slovak dictionary from Denisová (2021) [8]. This dataset claims 40%
accuracy; therefore, we post-processed the word pairs manually after selection.
We randomly sampled 3K source words and then randomly split them into 200,
500, and 1.5K source words for the subsequent evaluation.

The evaluation dataset for Czech-Slovak (cs-sk) was constructed manually
mostly from words that are different in both languages (e.g., želva - korytnačka,
turtle). We applied the same procedure as for the Estonian-Slovak evaluation
dataset, i.e., we compiled a 3K source-word dataset and randomly sampled 1.5K,
500, and 200 source words.

For English-Korean (en-ko), we used the open-source evaluation dataset
MUSE, which consists of 1.5 source words (English-Korean test set). Afterwards,
we randomly selected 500 and 200 source words for the subsequent evaluation.
To extend this dataset, we randomly sampled another 1.5K source words from
the full English-Korean MUSE dataset. Afterwards, we combined them with the
MUSE evaluation dataset to create a 3K-source-words dataset.

Metrics. The most common reported metric in the BLI task is precision (%).
Precision or P@k is the ratio of True Positives (TP) to the sum of the True
Positives and False Positives (FP) defined by the following formula:

𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)
Where k represents the number of top target words retrieved for a source

word. In this paper, we compute P@1, i.e., we retrieve one closest target word
for each source word.

Baselines. MUSE [7] is a generative-adversarial-network-based model in the
unsupervised setting (MUSE-U). The supervised (MUSE-S) setting and setting
that relies on identical strings (MUSE-I) uses iterative Procrustes alignment.
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VECMAP is a framework that encompasses various stages, including orthogo-
nalmapping, re-weighting, and dimensionality reduction, within its supervised
settings (VM-S, VM-I) [2]. In its unsupervised setting (VM-U) [3], VECMAP em-
ploys a robust iterative self-learning procedure.

RCLS is an orthogonal-mapping-based method with implemented convex
relaxation in the retrieval stage. We trained this method in the supervised set-
ting only.

Seed Lexicons.The Seed lexicons used in supervised trainingwere compiled
the same way as evaluation datasets. For Estonian-Slovak, we randomly sam-
pled 5K source words from Denisová (2021)’s dataset [8]. For Czech-Slovak,
we automatically constructed a 5K-source-words dataset consisting of identical
words from the MWE vocabularies. For English-Korean, we used MUSE training
dataset [7].

Training. The default settings closely adhere to the training outlined in [7]
for the MUSE model, and VM-S and VM-I are presented in [2]. The parameters
for VM-U follow the training procedures from [3]. Additionally, RCLS training
settings align with those described in [14].

During the training, we experimentedwith twoMWEs.We used pre-trained
FastText embeddings [11] for Estonian, Slovak, Czech, English, and Korean,
which were trained on texts from Wikipedia2 with dimension 300.

The second pre-trained embeddings were provided by SketchEngine [12].3
These embeddings were trained with the samemethod [5] but on different data
(web corpora), with dimensions 100 for Estonian-Slovak and English-Korean,
and 300 for Czech-Slovak.

3 Evaluation

In the evaluation process, we assessed all three models on Estonian-Slovak,
Czech-Slovak, and English-Korean with the split datasets into four groups: 200,
500, 1.5K, and 3K source words. We extracted one target word for each source
word by computing the cosine similarity between the source and target word
vector. Then, we calculated P@1. Tables 1, 2, and 3 show the results.

Tables 1 and 2 show that the difference between the precision for both
groups fluctuateswildlywithin amargin of approximately 15%. The best results
were achieved for the Estonian and Czech in combination with Slovak when the
3K-source-word datasets were used.

This could mean that we get more precise results with datasets containing
more source words or that the underlying distribution varies significantly after
splitting the dataset.

The exemption was Table 3, the English-Korean language pair. In the ma-
jority of cases, the best results were gained with the 1.5K-source-word dataset,
2 https://www.wikipedia.org/
3 https://embeddings.sketchengine.eu/
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Table 1: The results for the Estonian-Slovak language combination.

et-sk (%) FastText SketchEngine
200 500 1.5K 3K 200 500 1.5K 3K

MUSE-S 17.34 18.93 21.37 23.18 26.53 27.02 32.30 36.14
MUSE-I 10.20 13.40 15.30 16.65 27.55 24.68 28.82 32.03
MUSE-U 11.73 12.76 13.52 15.64 20.40 20.85 23.80 27.14
VM-S 19.89 25.53 26.88 30.72 28.57 28.72 34.81 38.85
VM-I 17.34 18.29 22.18 24.60 21.93 22.76 26.63 30.15
VM-U 15.30 16.17 19.67 21.72 22.95 22.12 26.63 29.80
RCLS 16.83 19.78 22.99 27.05 27.55 26.59 34.73 38.28

Table 2: The results for the Czech-Slovak language combination.

cs-sk (%) FastText SketchEngine
200 500 1.5K 3K 200 500 1.5K 3K

MUSE-S 58.08 62.10 64.99 68.72 62.26 65.89 71.50 75.72
MUSE-I 59.59 61.68 64.92 68.93 61.61 65.68 70.97 75.48
MUSE-U 60.60 62.31 65.51 69.25 61.00 65.68 70.97 75.44
VM-S 59.09 60.63 66.41 69.13 62.62 65.47 71.50 75.84
VM-I 59.09 64.42 68.66 72.10 61.61 65.89 71.42 75.52
VM-U 59.09 64.21 68.58 72.10 61.61 65.89 71.50 75.60
RCLS 57.57 61.05 64.32 68.04 64.14 67.36 72.70 76.48

Table 3: The results for the English-Korean language combination.

en-ko (%) FastText SketchEngine
200 500 1.5K 3K 200 500 1.5K 3K

MUSE-S 13.91 13.57 17.44 15.91 16.49 19.82 21.23 19.00
MUSE-I 11.34 14.22 17.16 15.80 10.30 15.51 14.64 13.90
MUSE-U 10.30 11.42 13.94 12.78 12.37 13.36 12.05 11.63
VM-S 29.38 29.52 35.31 33.80 21.13 20.90 23.75 21.58
VM-I 20.61 17.67 21.72 19.03 13.91 15.30 15.41 13.43
VM-U 12.37 14.22 16.53 14.51 6.70 5.81 6.51 5.63
RCLS 30.92 27.80 34.40 32.54 21.13 20.90 22.91 20.25
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within a margin of approximately 5%, which is not as distinct as in the previous
two groups. This dataset came from a different source than the other ones, and
as the only one, it was compiled automatically, which might be the reason for
various outcomes.

Moreover, when comparing the results with different MWEs, the models
trained with SketchEngine MWEs outperformed the models trained with Fast-
TextMWEs inmost cases. We explain the differences in Subsection 3.1 in further
detail.

In the next step, we split all three 3K-source-word datasets into six random
groups of 500 sourcewords. Afterwards,we evaluatedVM-Swith these datasets
as an example. The objective was to observe whether the large gaps would be
preserved in a different setup or whether the changed word distribution would
bring more balance. Table 4 shows the development of this experiment.

Table 4: The results of 3K-headword evaluation datasets split into groups of 500.

VM-S ET-SK CS-SK EN-KO
FastText SketchEngine FastText SketchEngine FastText SketchEngine

I. 26.73 29.34 64.64 70.50 28.33 17.45
II. 21.42 25.10 61.89 68.00 28.45 17.78
III. 26.30 33.04 60.45 67.28 31.12 18.67
IV. 22.82 30.65 58.10 63.36 27.55 20.00
V. 22.73 30.31 57.74 64.22 29.35 19.07
VI. 21.61 29.55 53.52 57.64 30.06 18.88

Given Table 4, the gaps for each group of evaluation source words were
reduced, remaining within the margin of approximately 8%. This suggests
that random sampling seemingly might preserve the underlying distribution;
however, the variance in the real scenario is more significant.

3.1 Error Analysis

Due to the inconsistencies in the outcomes, we performedmanual error analysis
for the Estonian-Slovak andCzech-Slovak language pairs while using themodel
VM-S as an example. Table 5 outlines the results.

Based on the results stated in Table 5, we can observe that the gaps reduced
significantly, staying within the margin up to 4%. The best result was achieved
twice with the 1.5K-source-word datasets, once with the 200- and 500-source-
word datasets.

The reasons behind the large gaps between the results were twofold. Firstly,
the top first target word that the model found was not in the evaluation dataset,
although it was correct, e.g., ajajärk (time period, era, epoch) - obdobie (VM-S), doba
(evaluation dataset).
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Table 5: Manual error analysis of the results of the model VM-S for Estonian-
Slovak and Czech-Slovak.

VM-S ET-SK CS-SK
FastText SketchEngine FastText SketchEngine

3K 45.41 56.51 86.57 94.41
1.5K 47.61 59.67 87.28 94.83
500 46.59 58.51 86.31 94.94
200 46.93 60.71 86.86 94.44

This happened quite often because we did not include such a target word in
the evaluation dataset, or the source words with multiple target words were
randomly spread out in different datasets during the splitting. For example,
the Estonian source word puhuma (to blow) had multiple target words such as,
pofúkať, fúkať, trúbiť, vanúť, zaviať, viať, and in the 200-source-word dataset got
the target word zaviať that was not the top one (which was fúkať) but the top
second or third target word that the model found.

The second common reason was the uneven distribution of out-of-the-
vocabulary (OOV) words. These were words that were not in the MWEs, low-
frequency words, and words left out during the training. For example, řeřicha
(garden cress), pulec (tadpole), drobek (crumb), segisti (faucet), ahing (fish-spear),
etc.

On top of that, we analysed the gaps between SketchEngine and FastText
MWEs. A closer look revealed that models trained with FastText MWEs were
more likely to find a correct equivalent for proper nouns (e.g., Clara, Emma,
Erik, Phillip, etc., see Table 6, type A) which have a bigger representation in
the English-Koreandatasets than inCzech-Slovak or Estonian-Slovak evaluation
datasets.

Moreover, the English-Korean dataset contained a lot of noise in the form of
words translated with the same word (e.g., vms–vms, pgm-pgm, etc., see Table 6,
type B), for which the models trained with FastText were more likely to find a
target word from the evaluation dataset.

On the other hand, models trained with SketchEngine MWEs were better
at finding more accurate translation equivalents rather than words with lexical-
semantic meanings (e.g., hnědá), see Table 6, type C). Additionally, they out-
performed the FastText MWEs on the vocabulary, slang (e.g., emps) and low-
frequency words (e.g., stýskat, chasník, etc., see Table 6, type D). The examples
are displayed in Table 6

4 Conclusion

In this paper, we have investigated whether the standard 1.5K source words
used in the evaluation datasets are enough to assess the CWE model accurately
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Table 6: The differences between the models trained with FastText and
SketchEngine MWEs (examples from EN-KO, ET-SK, and CS-SK trained with
the VM-S model). (FT = FastText; SkeEng = SketchEngine)

Type SRC ED FT SkeEng Description
A Clara 클라라 클라라 외가에서 proper

names
Emma 엠마 엠마 희진
Erik 에릭 에릭 동료인
Phillip 필립 필립 옹은

B vms vms vms 램도 same
word with
same
wordpgm pgm pgm 변환하고

C hnědá hnedá
(brown)

žltohnedá hnedá precise
translations

D stýskat cnieť (to
miss)

- cnieť low-
frequency
words, slangchasník mládenec

(young man)
- chasník

emps mamka - mamka

or whether we need more or fewer source words. We have experimented
with evaluation datasets of various sizes: 200, 500, 1.5K, and 3K source words.
Furthermore, we have split the 3K-source-words evaluation dataset into six
random groups of 500 to observe how the outcomes would change.

Afterwards, we provided amanual error analysis, focusing on gaps between
the results with different evaluation datasets. And we analysed the differences
between the models trained with FastText and SketchEngine MWEs. We ex-
plained them and presented examples.

In conclusion, when splitting the datasets randomly, the results oscillated
intensely within a margin of up to 15%. However, the manual error analysis
revealed that the actual results faintly varied between 1-4%, remaining approx-
imately the same within all datasets.

This outcome suggests that the random splitting of datasets does not ensure
an equal underlying distribution within all the datasets. Moreover, it shows that
the result strongly depends on the appropriate vocabulary choice rather than on
the size of the dataset. This confirms the exemptional results from the English-
Korean language pair evaluated on a dataset from a different resource than the
others.

Generally, when selecting the size of the evaluation dataset, comparable
results could be achieved even with a smaller dataset when the focus is on the
quality of the chosen vocabulary for the evaluation dataset.
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