
Utok: The Fast Rule-based Tokenizer

Pavel Rychlý and Samuel Špalek

Natural Language Processing Centre
Faculty of Informatics, Masaryk University

Botanická 68a, Brno, Czech Republic
pary@fi.muni.cz

Abstract. Tokenization is one of the first processing steps in most natural
language processing applications. The papper introduces a new tokenizer
Utok which follows the Unitok tokenizer in the form of simplicity of
configuration for different languages and is much faster in processing
speed.

1 Introduction

Tokenization is a process of breaking down text data into minimal meaningful
elements called tokens. That gives themachine ability to analyze each element in
the context of other elements. It is one of the first tasks in theNLP text processing
pipeline.

Most basic tokenizers use a simple idea of splitting text based onwhitespace.
That works well enough for some cases. The rest of the cases are more compli-
cated, language-dependent, and require special treatment.

Examples of tokens we might want to recognize are:

– Words
– Numbers
– Dates
– Punctuation characters such as () . , [] { }
– Abbreviations (Etc., Jan., Mr., Gov.)
– Email
– URL
– SGML tags (HTML, XML, ...)

Tokens can also contain metadata. Most basic metadata would be a token
position in the original text. Some tokenizers even categorize tokens into groups
(e.g., POS tagging). We will focus on tokenizers that only separate tokens.
Additional metadata can be added later upon further processing.

This paper introduces a new tokenizer: utok. It tries to solve tomain problem
of the unitok tokenizer: a slow processing of certain types of inputs. The paper
also describes differences between unitok and utok tokenizers.

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2022, pp. 149–154, 2022. © Tribun EU 2022

150 P. Rychlý and S. Špalek

2 Tokenizers

2.1 Unitok

Unitok [4] is a tokenizer that takes text stream and outputs tokens separated
by a newline. It is written in python language and uses the native python
library for regular expressions (regexes). That results in not ideal performance.
Configuration for a specific language is defined in the python code. Therefore
configuration files are not universal and cannot be used out of the box in a
different tokenizer.

Unitok supports many languages, such as Czech, Danish, Dutch, English,
French, Finnish, German, Greek, Hindi, Italian, Maldivian, Spanish, Swedish,
Yoruba. Other languages can be processed with default settings.

Glue tag In cases where there are two tokens next to each other, not separated
with whitespace, a special glue tag <g/> is used.

An example of such case would be a dot at the end of a sentence. The last
word in the sentence and the dot at the end is not separated with whitespace.
Unitok produces tokens: last_word <g/> .

Using the glue tag makes the tokenization reversible. It is possible to recon-
struct original text from unitok output (same for utok).

Configuration files The unitok requires a configuration file for each language.
It contains a list of regular expressions representing different types of tokens
and the order of evaluation of that reqular expressions. The form configuration
file has a form of a Python source file, any Python constructs could be used.

Configuration of many languages uses advanced techniques like look-ahead
to define some tokens. For example the following regular expression is used to
describe order numbers in English:

ORDINAL = ur"""
(?<![-\w])

(\d+th | \d*(1st|2nd|3rd))
(?![-\w])
"""

Processing method The main part of the Unitok algorithm processes the input
line by line and tries to find selected tokens in the line and splitting the line on
that tokens. Then the smaller parts of the line are processed the same way in
recurrence. That special tokens are selected in the order defined in the language
configuration file.

Utok: The Fast Rule-based Tokenizer 151

2.2 Utok
Utok is a tokenizer created as a better version of unitok. It offers faster processing
and a better, more universal configuration method.

For now, there is support for English and Czech language. Supporting a
new language is pretty straightforward and basic configuration file (3.2) is good
starting point.

Under the hood, utok is written in C++ and uses re2 regex library [2].
This library uses finite-state automaton and does not support advanced regex
options that need to use functionality like backtracking (e.g., backreferences,
look-around). That guarantees linear time complexity for every regex search.

Utok also supports ”glue tag” and special ”split” feature (3.1).

3 Utok configuration

Configuration is specified in a separate file. Each non-empty line contains a
regex expression. All these regexes are parsed and concatenated into one big
regex, that is then compiled using the re2 library. The configuration file supports
comments using # symbol at the start of a line.

Each supported language has its own configuration file. Section 3.2 describes
basic configuration file. It can be easily extended with language-specific tokens
like abbreviations.

3.1 Split feature
Utok supports a special ”split” feature. It is annotated with *SPLIT at the start
of a line in a config file.

Utok goes through the text and tries to match one of the regexes from the
config file. After a match is found, it tries to match regexes annotated with
*SPLIT in order to split the tokenmore and connect the parts with glue tag <g/>.

In English configuration it is used to separate apostrophe at the end of a
word. For input “don’t”, the output tokens are do <g/> n't

This functionality produces significant slow down (see benchmarks 1). Utok
performance is good, but it should be considered if the configuration for
language needs to use this split feature.

3.2 Basic configuration
The example of what could be considered the default configuration for most
languages is in Figure 1.

When creating a new language configuration, this configuration can be
extendedwith language specific rules such as clitics, abbreviations, specialword
characters and emojis. The following example shows such extension for English
which uses the SPLIT feature to separate English clitics as individual tokens.

*SPLIT (?i)(.+)('s|'re|'ve|'d|'m|'em|'ll|n't)
*SPLIT (?i)(can)(not)

152 P. Rychlý and S. Špalek

SGML tags
<[/?!]?[a-zA-Z][-.:\w]*\s*/?.*>
<!--.*?-->

XML entity
&(amp|lt|gt|quot|apos);

URL
(https?|ftps?|file)://\S*
\bwww\.([-a-zA-Z0-9]+\.)+[a-zA-Z]{2,}(/\S*)?
\b[a-zA-Z]([-a-zA-Z0-9]+\.)+(com|org|net|edu|gov|co\.uk)(/\S*)?

Email
\w[-'.\w]*@([-a-zA-Z0-9]+\.)+[a-zA-Z]{2,}

Hashtag
[#@][a-zA-Z][a-zA-Z0-9]+

Numbers
\d+([-+/.,]\d+)*

U.S.A.
([A-Z]\.)+\B

Words
([\pL\pM\pN]|[\pL\pM\pN])+(['\-\p{Pc}][\pL\pM\pN]+)*

Puctuation = any non-word, non-space
[?!]+
''
\.+|*+|:+|=+
[^\pL\pM\pN\pZ]

Fig. 1: Basic configuration of utok

Table 1: Running time of Utok and Unitok on inputs of different size.
Program English

(17 MB)
English
(91 MB)

Lorem ipsum
with html (96
KB)

Czech
(369 MB)

Utok 2.0s 16.7s 56.9ms 25.8s
Utok (no split) 1.0s 7.5s 49.9ms 25.8s
Unitok 12.3s 224.3s 426.3ms 621.6s

4 Benchmark

We have done basic evaluation of the speed of both Unitok and Utok on
English and Czech texts. The results are summarized in Table 1. We can see the

Utok: The Fast Rule-based Tokenizer 153

slowdown of Utok with the SPLIT feature in the configuration file. The Czech
configuration does not uset the SPLIT feature.

5 Differences in output

During the creation of a utok configuration, the unitok was used as a baseline
of good tokenization. However, there are cases in which it is harder to decide
what behavior is better. In this section, we will explore a few differences
found on English texts when comparing Unitok and the first version of Utok
configuration.

The most frequent differences in our test data are the following:

1. Double symbol: for double symbols such as “// $$ %% --” unitok keeps
them together // . On the other hand utok separates symbols with the glue

tag / <g/> / .
2. When hash symbols is used like hashtag “#hashtag”, both tokenizers keep

it as one token. Difference is when the hash symbols is between two words
“word#hashtag”.Unitok separates the hash symbolwith the glue tag on both
sides word <g/> # <g/> hashtag . Utok keeps the hash symbol with

the second word word <g/> #hashtag .
3. When talking about years in English we might encounter input “1980’s”.

Unitok keeps it as one token.Utok separates itwith the glue tag 1980 <g/>

's
4. Apostrophe in non-usual places, for example foreign name “Tour de l’Aude”.

Unitok separates apostrophe from both sides with glue tag Tour de l

<g/> ' <g/> Aude . Utok keeps the word together Tour de l'Aude .
5. Two dots at the end of a sentence in input “Title G. A. S..”. Unitok keeps the

two dots together Title G. A. S <g/> .. . Utok has more natural

behavior Title G. A. S. <g/> . .

We can see that the differences are small and in many cases we think that
Utok tokenization is better.

6 Conclusion

Utok is a tokenization tool that is built upon the previous work on unitok.
The main advantage is speed and ease of configuration. Utok is an order of
magnitude faster than Unitok. With even the basic configuration, it works well
enough for unsupported languages.

154 P. Rychlý and S. Špalek

In the future work we will adapt configuration files for all languages in
Unitok to respective configuration in Utok. We will also experiment with other
regular expression engines or implementation in other programming languges.
We also plan to compare the tokenization of Utok with some highly used
tokenizers for English ([1,3]).

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT/CLARIAH-CZ project (LM201810).

References

1. Altinok, D.: Mastering spaCy: An end-to-end practical guide to implementing NLP
applications using the Python ecosystem. Packt Publishing Ltd (2021)

2. Google: Google/re2. https://github.com/google/re2 (2022)
3. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The

Stanford CoreNLP natural language processing toolkit. In: Association for Compu-
tational Linguistics (ACL) System Demonstrations. pp. 55–60 (2014), http://www.
aclweb.org/anthology/P/P14/P14-5010

4. Michelfeit, J., Pomikálek, J., Suchomel, V.: Text tokenisation using unitok. In: Horák,
A., Rychlý, P. (eds.) RASLAN 2014. pp. 71–75. Tribun EU, Brno, Czech Republic (2014)

