
Blooming Onion: Efficient Deduplication through
Approximate Membership Testing

Ondřej Herman1,2

1 Faculty of Informatics, Masaryk University
Botanická 68a, 612 00 Brno, Czech Republic

xherman1@fi.muni.cz
2 Lexical Computing s.r.o.

Botanická 68a, 612 00 Brno, Czech Republic
ondrej.herman@sketchengine.eu

Abstract. Deduplication of source text is an important step in corpus
building. Maximum corpus sizes have been grown significantly, along
with the requirements for computing resources required for processing
them. This article explores reducing the cost of deduplication by applying
approximate membership testing using Bloom filtering.

Keywords: deduplication, text corpora, Bloom filter

1 Introduction

Deduplication is an essential step in the preparation of text corpora for many
downstream tasks in natural language processing. For example, in the process
of training unsupervised machine learning models, repeated instances of the
same data can cause significant biases. In fulltext search applications, the end
users do not want to see repeated results for a single query, but a balanced
representation of the source corpus. In linguistic applications, repeated text in
the source data influences the statistics derived from it and reduces the quality
and representativeness of the result.

Duplicates appear for many reasons in text data. Humans like to copy. This
happens on many levels. Citations, boilerplate, or outright spam are common
reasons. Data obtained from the Web is rife with repeated text in the main
content, but also advertisments, context management system artifacts and links
to the same, repeated content. The repeated content is not always an exact copy,
but is sometimes changed slightly, to escape detection, or simply due to errors,
so detection of exact instances is not enough for practical use, near duplicates
also need to be considered.

1.1 Onion

The tool we use for text deduplication for the building of corpora at Sketch
Engine ([6]) is Onion ([7]). Onion (ONe InstanceONly)works on the vertical text

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2022, pp. 91–95, 2022. © Tribun EU 2022



92 O. Herman

format. At this stage, the text has already been tokenized and is represented as a
single line per token, possibly with additional data for the same token separated
by TAB characters on the same line, such as lemmata or part-of-speech tags.
The text is segmented at least into documents and paragraphs, delimited by
<doc>, </doc> and <p>, </p>markers. Other markers, such as <s> for describing
sentence boundaries,may be present. For example, the beginning of the Susanne
corpus in the vertical text format:

<doc file="A01" n="1">
<p>
<s>
The the AT
Fulton Fulton NP1s
County county NNL1cb
Grand grand JJ
Jury jury NN1c
said say VVDv
Friday Friday NPD1
an an AT1
investigation investigation NN1n

Onion works by detecting and discarding duplicate or near-duplicate para-
graphs. Paragraph is split into overlapping sequence of tuples of words, called
shingles. For example, shingles of length 3 in the above text would be (The, Ful-
ton, County), (Fulton, County, Grand), (County, Grand, Jury) and so on. A para-
graph is considered to be a duplicate if the proportion of already seen shingles
contained within it is larger than a specific threshold. For our purposes, we set
this threshold to 50 % and the shingle length to 7.

Onion works by storing the hashes of all already seen shingles in a hash
table, and therefore the memory requirements can be quite significant for
large corpora. In the following, I explore the possibility of replacing the hash
table, which stores the exact hashes for ecery shingle, by an approximate data
structure. This can have a significant effect on memory requirements, but only
a small and predictable effect on the precision of the threshold check.

2 Approximate membership testing

Membership testing is the problem of checking whether an element is present
as a member of a set. Our elements do not have any special mathematical
properties and can be arbitrary, so storing some information about them is
unavoidable.

The straightforward approach to this problem is storing the elements or their
fingerprints in a collection and then searching the collection to see whether the
elements are present or not.

For 𝑛-element collections, simple tree structures such as Binary search trees
allow for average insertion and retrieval complexity in 𝒪(log𝑛) per element,



Blooming Onion: Efficient Deduplication 93

while Hashtable based data structures approach 𝒪(1). Nevertheless, the space
requirement is 𝒪(𝑛), so the memory requirements increase linearly as new,
unseen data points arrive.

A method first described in [2], the Bloom filter, allows for a significantly
reduced memory footprint for the creation of a data structure, at the cost of
possible false positives. That is, an element which has not been inserted, can be
deemed present in the set with a non-zero probability. The Bloom filter consists
of a zero-initializedm-bit array and k hash functions. Each of the hash functions
takes the set element and hashes it to a number between 0 and 𝑚.

During the insertion into the Bloom filter, the element is hashed by each of
the hash functions and the bits at the corresponding positions in the bit array
are set to 1.

During the retrieval, the element is hashed in the same way and the bit
positions are examined. If any of them is 0, the element has certainly not been
inserted into the array.

Bloomfilter can trade off thememory requirements against the false positive
rate. The rate is approximately 1 % for a Bloom filter which uses 10 bits per
element.

The main drawback is that the Bloom filter does not allow for resizing and
that the parameters need to be known in advance. An extension, the Scalable
Bloom filter ([1]), allows for indefinitely growable approximate membership
structure. First, a single Bloom filter is created. As elements are added and
the false positive rate raises above a specified threshold, another larger filter
is allocated and new elements are inserted into it. This procedure is repeated as
required. Membership is then checked in every Bloom filter in sequence.

Many other data structures for approximate membership testing have been
devised over the years with reduced memory requirements, better cache local-
ity or throughput. Unfortunately, all of them seem to have properties which
disqualify them for the use case at hand.

For example, the Cuckoo filter ([4]), which uses Cuckoo hashing, is more
efficient in terms of space required and exhibits good cache locality, but resizing
requires rehashing all the elements which have already been inserted.

The XOR filter ([5]) and Ribbon filter ([3]) are even better in terms ofmemory
requirements, but do not support dynamic insertion and require a distinct build
step before they can be used.

3 Blooming Onion

It is written in the Rust3, which is a modern programming language, designed
with performance and safety in mind.

The program uses the Growable Bloom filter4 library, which implementats
the Scalable Bloom filter data structure. The Scalable Bloom filter. The structure
is initialized with the false positive rate set to 1 %.
3 https://www.rust.org
4 https://crates.io/crates/growable-bloom-filter



94 O. Herman

Table 1: Susanne corpus

runtime max RSS
Blooming Onion 1.94 s 3608 kB
Onion 1.71 s 30616 kB

Table 2: JSI Newsfeed

runtime max RSS
Blooming Onion 720.6 s 271.6 MB
Onion 491.3 s 2367.2 MB

Only the most essential features have been implemented at this point and
the program serves as a proof of concept. The whole implementation fits into
160 lines of code.

4 Evaluation

Blooming Onion was evaluated against Onion on two datasets:

1. Susanne corpus, repeated 20 times (100 MB, 190 k lines, 97.5 % duplicate,
see Table 1)

2. 7 days of the JSI Newsfeed Corpus (13 GB, 876 k lines, 64 % duplicate, see
Table 2)

The time required for the deduplication and the maximal resident set size
(RSS) have been measured.

While Blooming Onion is about 25 % slower, it uses only 10 % of the
memory compared to Onion. The slowdown can be attributed to two major
causes. Scalable Bloom filter has worse cache-related behavior compared to the
hashtable used by Onion. The backing bits of the filter are scattered around in
memory, and therefore require multiple random accesses. This problem could
be improved by using a different data structure, perhaps some type of Quotient
filter, which orients the accesses for a single elements into a smaller memory
are. No implementation of such data structure seems to be available. Of interest
could be the fact that the evaluation has been carried out on a server with slow
DDR3 memory. A cursory check on a modern laptop with a smaller amount of
faster DDR4memory swaps the order of performance and Onion is slower than
Blooming Onion.

The second reason is that Onion is written in a highly optimized way, which
avoids many copies of the data at the expense of readability, while Blooming



Blooming Onion: Efficient Deduplication 95

Onion aims to be simple and readable, and the input text is being copied
multiple times. This can be explored in a future version of Blooming Onion.

5 Conclusion

The problem of text deduplication and a current approach we use has been
described. The Blooming Onion deduplicator was presented and compared
against Onion. Blooming onion is approximately 25 % slower, but only requires
10 % of the compared to Onion. With the proposed improvements, Blooming
Onion could be both faster and use more memory compared to Onion.

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT-CLARIAH-CZ project LM2018101.

References

1. Almeida, P.S., Baquero, C., Preguiça, N., Hutchison, D.: Scalable bloom filters. Infor-
mation Processing Letters 101(6), 255–261 (2007)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422–426 (1970)

3. Dillinger, P.C., Walzer, S.: Ribbon filter: practically smaller than bloom and xor. arXiv
preprint arXiv:2103.02515 (2021)

4. Fan, B., Andersen, D.G., Kaminsky,M., Mitzenmacher, M.D.: Cuckoo filter: Practically
better than bloom. In: Proceedings of the 10th ACM International on Conference on
emerging Networking Experiments and Technologies. pp. 75–88 (2014)

5. Graf, T.M., Lemire, D.: Xor filters: Faster and smaller than bloom and cuckoo filters.
Journal of Experimental Algorithmics (JEA) 25, 1–16 (2020)

6. Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Rychlỳ, P.,
Suchomel, V.: The sketch engine: ten years on. Lexicography 1(1), 7–36 (2014)

7. Pomikálek, J.: Removing boilerplate and duplicate content from web corpora. Ph.D.
thesis, Masaryk university, Faculty of informatics, Brno, Czech Republic (2011)


