
The Art of Reproducible Machine Learning
A Survey of Methodology in Word Vector Experiments

Vít Novotný

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

witiko@mail.muni.cz
https://mir.fi.muni.cz/

Abstract. Since the seminal work of Mikolov et al. (2013), word vectors of
log-bilinear svms have found their way into many nlp applications as an un-
supervised measure of word relatedness. Due to the rapid pace of research
and the publish-or-perish mantra of academic publishing, word vector ex-
periments contain undisclosed parameters, which make them difficult to
reproduce. In our work, we introduce the experiments and their parame-
ters, compare the published experimental results with our own, and sug-
gest default parameter settings and ways to make previous and future ex-
periments easier to reproduce. We show that the lack of variable control
can cause up to 24% difference in accuracy on the word analogy tasks.

Keywords: Machine learning, word vectors, word2vec, fastText, word
analogy, reproducibility

1 Introduction

After a long reign of topic modeling, [9] log-bilinear svms have emerged as a
faster1 method for learning word representations, [18] which can also infer repre-
sentations of unseen words using a subword model [2]. Word vectors produced
by log-bilinear svms have found their way into many nlp applications, such as
word similarity, word analogy, and language modeling [2] as well as depen-
dency parsing [8, Section 5], word sense disambiguation [6], text classification
[14], semantic text similarity [5], and information retrieval [22, Section 4].

Although the usefulness of word vectors is rarely disputed, their theoretical
foundations were only later addressed by Levy and Goldberg (2014) [16]. In their
later work, Levy at al. (2015) [17] have shown that several pre-processing steps
and fixed parameters can have a significant impact on experimental results. In
this work, we describe six new undisclosed parameters that make word vector
experiments difficult to reproduce. We compare the published experimental
results with our own and suggest improvements to reproducibility.

1 The time complexity of streaming approximations of the sparse svd method used
in topic modeling scales quadratically with the word vector size, [31, Section 2.3]
whereas log-bilinear svms are linear in both the word vector size and the corpus size.

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2020, pp. 55–64, 2020. © Tribun EU 2020

56 V. Novotný

Table 1. The accuracies (%) of word vectors on the word analogy tasks for various
languages using only the 𝑛 most frequent words as the word analogy candidates for
different values of 𝑛. Three languages most affected by the variations of 𝑛 are highlighted.

Cs De Es Fi Fr Hi It Pl Pt Zh
Grave et al. [10], 𝑛 = 2 ⋅ 105 69.9 72.9 65.4 70.3 73.6 32.1 69.8 67.9 66.7 78.4

Our results, 𝑛 = 2 ⋅ 105 70.7 73.4 65.6 71.2 73.7 32.2 73.0 68.5 67.0 78.5
Our results, 𝑛 = 3 ⋅ 105 68.9 73.3 65.6 68.9 73.2 26.4 72.0 66.3 65.7 78.5
Our results, 𝑛 = 1 ⋅ 106 65.4 70.4 63.4 60.9 71.9 16.0 68.3 61.1 61.3 78.3

2 Word Analogy Tasks

In their seminal work, Mikolov et al. (2013) [18, Section 4] introduced the English
word analogy task, which measures the ability of word vectors to answer the
question “Which word 𝑏′ is to 𝑎′ as 𝑎 is to 𝑏?”. In the following years, the English
word analogy task has been translated to many languages, including Czech [28],
German [15], Spanish [4], Finnish [30], Italian [1], Portuguese [12], Turkish
[27,11] and simplified Chinese [7] as well as French, Hindi, and Polish [2].

Rogers et al. (2017) [26] discuss the many problems with the word analogy
task, including the selection of word pairs, the significant impact of includ-
ing/excluding the words 𝑎, 𝑏, and 𝑎′ in the candidates for 𝑏′, and the underlying
assumption that word relations are unique or even symmetric. In this section,
we discuss two undisclosed parameters of the word analogy task.

2.1 Using only the most frequent words

To make the evaluation less susceptible to rare words, Mikolov et al. (2013) [18]
only considered the 𝑛 most frequent words as the candidates for 𝑏′. However, the
value of 𝑛 changes between experiments and is usually undocumented: Mikolov
et al. (2013) [18] used 𝑛 = 1 ⋅ 106, the reference implementation2 defaults to
𝑛 = 3 ⋅ 105, and Grave et al. (2018) [10] used 𝑛 = 2 ⋅ 105. Mikolov et al. (2013)
[20], Bojanowski et al. (2017) [2], and Mikolov et al. (2018) [19] did not disclose
the value 𝑛 they used, which makes their results difficult to reproduce.

To show how significant the value of 𝑛 is, we reproduce3 the results of Grave
et al. (2018) [10, Table 4] with 𝑛 ∈ {2⋅105, 3 ⋅105, 1 ⋅106}. Table 1 shows that up to
16% of word analogy accuracy can depend on the value of 𝑛. The most affected
languages are Hindi, French, and Polish, indicating small/noisy training data.

To make results reproducible, we suggest that all papers should report the
value of 𝑛 they used in their evaluation on the word analogy tasks. If unreported,
the value should be assumed to be 3 ⋅ 105, which is the default in the reference
implementation and in a popular implementation from the Gensim library4 [25].

2 https://github.com/tmikolov/word2vec (file compute-accuracy.c)
3 https://github.com/mir-mu/reproducible-ml (file word-analogy.ipynb)
4 https://github.com/rare-technologies/gensim (file gensim/models/keyedvectors.py,

method evaluate_word_analogies, also discussed in issue #2999)

The Art of Reproducible Machine Learning 57

Table 2. The accuracies (%) of word vectors on the word analogy tasks for various
languages and case transformations (upper-casing and lower-casing) with either the u.s.
English locale or the corresponding locales for the word analogy task languages. Three
languages most affected by the variations are highlighted.

Cs De Es Fi Fr Hi It Pl Pt Tr Zh
Grave et al. [10] 69.9 72.9 65.4 70.3 73.6 32.1 69.8 67.9 66.7 78.4
Our res., no case tran. 69.9 74.9 63.9 53.3 76.7 32.2 71.9 71.4 67.5 58.2 78.5
Our res., u.c., u.s. En. 70.7 73.4 65.6 71.2 73.7 32.2 73.0 68.5 67.0 57.0 78.5
Our res., u.c., corres. 70.7 73.4 65.6 71.2 73.7 32.2 73.0 68.5 67.0 61.0 78.5
Our res., l.c., u.s. En. 70.7 73.4 65.6 71.2 73.7 32.2 73.0 68.5 67.0 56.9 78.5
Our res., l.c., corres. 70.7 73.4 65.6 71.2 73.7 32.2 73.0 68.5 67.0 61.0 78.5

2.2 Caseless matching

To make the evaluation less susceptible to case, the words 𝑎, 𝑏, 𝑎′, and 𝑏′ are all
lower-cased in the experiments of Bojanowski et al. (2017) [2]. This is never men-
tioned in the published papers, only in the code of the reference implementa-
tion.56 Another problem is that in Unicode, lower-casing is locale-sensitive:
1. Lower-casing maps I to ı in Turkish and Azari, and to i in other locales.

A popular implementation in Gensim7 [25] uses upper-casing instead of lower-
casing. However, Unicode case is neither bijective nor transitive:
2. Upper-casing maps ß to SS, and lower-casing maps SS to ss (not ß).

This introduces several uncontrolled variables to the evaluation, most impor-
tantly the locale and the case transformation used for caseless matching.

To show how significant the locale and the case transformation are, we
reproduce8 the results of Grave et al. (2018) [10, Table 4] with various case
transformations, using either the u.s. English locale (en_US.UTF-8), or the
corresponding locales of the word analogy tasks. Table 2 shows that up to 18% of
word analogy accuracy can depend on the case transformations and the locale.
The most affected languages are Finnish, Turkish, and French.

To make results reproducible, we suggest that all papers should report the
case transformations and locales they used in their evaluation on the word anal-
ogy tasks. If unreported, the locale of the word analogy task should be assumed.
For case transformation, we suggest using the locale-independent Unicode case-
folding algorithm [29, Section 3.13] instead of lower- or upper-casing:
3. Case-folding maps I to i in all locales, although implementations such as icu

can map9 I to ı for Turkish and Azari. Case-folding maps ß, SS, and ss to ss.

5 https://github.com/facebookresearch/fastText (file get-wikimedia.sh)
6 https://github.com/facebookresearch/fastText/blob/master/python/doc/examples/

compute_accuracy.py (function process_question)
7 https://github.com/rare-technologies/gensim (file gensim/models/keyedvectors.py,

method evaluate_word_analogies, also discussed in issue #2999)
8 https://github.com/mir-mu/reproducible-ml (file word-analogy.ipynb)
9 https://github.com/unicode-org/icu (file icu4c/source/common/unistr_case.cpp,

method UnicodeString::foldCase)

58 V. Novotný

3 Multi-Word Expressions

In their work, Mikolov et al. (2013) [20, Section 4] introduced a phrasing algo-
rithm for merging commonly co-occuring words into multi-word expressions.
The algorithm forms phrases using unigram and bigram counts, using the fol-
lowing scoring formula, which is proportional to the non-normalized pointwise
mutual information (npmi) [3]:

score(𝑤𝑖, 𝑤𝑗) =
count(𝑤𝑖𝑤𝑗)

count(𝑤𝑖) ⋅ count(𝑤𝑗)
. (1)

Mikolov et al. (2013) merged candidate bigrams 𝑤𝑖𝑤𝑗 with score(𝑤𝑖, 𝑤𝑗) above a
threshold 𝛿 into phrases. Mikolov et al. (2018) [19, Section 2.3] further improved
the algorithm by randomly merging only 50% of the candidate bigrams, and
reached sota performance on the English word analogy task.

In this section, we discuss three undisclosed parameters of the phrasing
algorithm and the differences between the reference implementation10 and a
popular implementation in Gensim11 [25].

3.1 Thresholding the bigram scores

Neither Mikolov et al. (2013) nor Mikolov et al. (2018) disclosed the threshold
𝛿 they used for merging candidate bigrams into phrases, which makes their
results difficult to reproduce. The reference implementation uses 𝛿reference = 100
and a different formula:

scorereference(𝑤𝑖, 𝑤𝑗) =
count(𝑤𝑖𝑤𝑗) ⋅ corpusSize

count(𝑤𝑖) ⋅ count(𝑤𝑗)
(2)

The implementation in Gensim uses 𝛿Gensim = 10 and also a different formula:

scoreGensim(𝑤𝑖, 𝑤𝑗) =
count(𝑤𝑖𝑤𝑗) ⋅ dictionarySize

count(𝑤𝑖) ⋅ count(𝑤𝑗)
(3)

Apparently, score ≠ scorereference ≠ scoreGensim. Due to the Heaps’ law [13],
dictionarySize ≈ √corpusSize, so we might assume scoreGensim ≈ √scoreref..
Since 𝛿Gensim = √𝛿reference, we might then conclude scoreGensim > 𝛿Gensim ⟺
√scorereference > √𝛿reference. However, the assumption does not actually hold:

scoreGensim ≈
count(𝑤𝑖𝑤𝑗) ⋅ √corpusSize

count(𝑤𝑖) ⋅ count(𝑤𝑗)
≠ √

count(𝑤𝑖𝑤𝑗) ⋅ corpusSize
count(𝑤𝑖) ⋅ count(𝑤𝑗)

. (4)

To make results reproducible, we suggest that all papers should report the
scoring formula and the value of 𝛿 they used for phrasing. If unreported, the
scorereference scoring formula and the 𝛿reference = 100 value should be assumed.

10 https://github.com/tmikolov/word2vec (file word2phrase.c)
11 https://github.com/rare-technologies/gensim (file gensim/models/phrases.py, class

Phrases and function bigram_scorer)

The Art of Reproducible Machine Learning 59

3.2 Incremental threshold decay
Mikolov et al. (2013) [20, Section 4] and Mikolov et al. (2018) [19, Section 2.2]
apply the phrasing algorithm iteratively to form longer multi-word expressions.
Mikolov et al. (2013) use 2–4 iterations, whereas Mikolov et al. (2018) use 5–6
iterations. Mikolov et al. (2013) also reports using a decaying threshold to make
it easier for longer phrases to form. However, neither Mikolov et al. (2013) nor
Mikolov et al. (2018) disclosed the threshold decay function they used, which
makes their results difficult to reproduce.

To make results reproducible, we suggest that all papers should report the
exact number of iterations and the threshold decay function they used.

3.3 Maximum dictionary size
To make the phrasing algorithm less susceptible to rare words, Mikolov et
al. (2013) [20] and Mikolov et al. (2018) [19] have only considered the 𝑛 most
frequent words for the candidate bigrams. This is mentioned only in the code of
the reference implementation. Additionally, the reference implementation uses
𝑛 = 5 ⋅ 108, whereas a popular implementation in Gensim uses 𝑛 = 4 ⋅ 107.

To make results reproducible, we suggest that all papers should report the
value of 𝑛 they used for phrasing. If unreported, the value should be assumed
to be 𝑛 = 5 ⋅ 108, which is the default in the reference implementation.

4 Positional Weighting

The cbow model of Mikolov et al. (2013) [18] is trained to predict a masked word
in a context window 𝑃 from the average v𝐶 of the context word vectors d𝑝:

v𝐶 = 1
|𝑃| ∑

𝑝∈𝑃
d𝑝. (5)

In many sentences, the position of the context words is important for predicting
the masked word. Consider the following two sentences, which produce an iden-
tical context vector v𝐶, although the masked words are significantly different:
1. Unlike dogs, cats are ⟨mask⟩. 2. Unlike cats, dogs are ⟨mask⟩.

If the context window 𝑃 is large, distant context words will also be unimportant
for predicting the masked word.

To better model these scenarios, Mikolov et al. (2018) [19, Section 2.2]
adopted the positional weighting of Mnih and Kavukcuoglu (2013) [21, Sec-
tion 3], and reached sota performance on the English word analogy task. Po-
sitional weighting makes the average v𝐶 into a weighted average w𝐶, where
the weight of a context word at a position 𝑝 is the positional vector u𝑝, and the
weighting is carried out using the pointwise (Hadamard) vector product ⊙:

w𝐶 = 1
|𝑃| ∑

𝑝∈𝑃
d𝑝 ⊙ u𝑝, (6)

In this section, we discuss an undisclosed parameter of positional weighting.

60 V. Novotný

4.1 Positional weight initialization
In the cbow model of Mikolov et al. (2013) [18], the word vectors d𝑝 are initialized
to a random sample of the continuous uniform distribution 𝒰(± 1

2𝐷), where
𝐷 is the dimensionality of the word vectors. Word vector initialization is an
important parameter that affects the gradient size and therefore the effective
learning rate. However, it is never mentioned in the published papers, only
in the code of the reference implementation.12 In the subword cbow model of
Bojanowski et al. (2017) [2], the initialization changes to d𝑝 ∼ 𝒰(± 1

𝐷) in the
code of the reference implementation.13 Mikolov et al. (2018) [19] do not describe
the initialization of the word vectors d𝑝 or the positional vectors u𝑝. Since no
reference implementation exists either, their results are difficult to reproduce.

To show how significant initialization is, we describe several initialization
options for the word vectors d𝑝 and the positional vectors u𝑝. We then use the
initializations to reproduce14 the results of Mikolov et al. (2018) [19, Table 2] us-
ing the subword cbow model of Bojanowski et al. (2017) [2] and the 2017 English
Wikipedia15 training corpus (4% of the Common Crawl dataset used by Mikolov
et al., 2018) without phrasing. We report English word analogy scores using the
𝑛 = 2 ⋅ 105 most frequent words, and the case-folding case transformation.

Same as vanilla word vectors The simplest option is to use the initialization of the
word vectors d𝑝 also for the positional vectors u𝑝: d𝑝 ∼ u𝑝 ∼ 𝒰(± 1

𝐷). In practice,
this causes v𝐶 ≫ w𝐶, decreasing the learning rate (see Figure 1).

Identity positional vectors To ensure v𝐶 ∼ w𝐶, the simplest option is to initialize
the word vectors d𝑝 to 𝒰(± 1

𝐷) and the positional vectors u𝑝 to 1. Intuitively, the
training starts with no positional weighting and positional vectors are learnt
later. In practice, d𝑝 ≪ u𝑝, causing the gradient updates of d𝑝 to explode for
dimensionality 𝐷 > 600. This leads to instability, causing d𝑝 = u𝑝 = NaN.

Same as word vectors To ensure v𝐶 ∼ w𝐶 and d𝑝 ∼ u𝑝, we require a square
distribution 𝒰0.5(± 1

𝐷) such that for i.i.d. d𝑝, u𝑝 ∶ d𝑝 ∼ u𝑝 ∼ 𝒰0.5(± 1
𝐷), we get

d𝑝 ⊙ u𝑝 ∼ 𝒰(± 1
𝐷). Although an empirical approximate of 𝒰0.5(0, 1) using the

𝛽-distribution is known [24] (see Figure 2), this does not help with 𝒰0.5(± 1
𝐷),

so we need a different approach: If we assume that the context window 𝑃 is
sufficiently large, then v𝐶 ∼ N(𝜇, 𝜎2

|𝑃|) by the clt, where 𝜇 = E[𝒰(± 1
𝐷)] = 0 and

𝜎2 = Var[𝒰(± 1
𝐷)] = 1

6𝐷2 . For v𝐶 ∼ w𝐶, we need a distribution 𝑋 such that
d𝑝 ∼ u𝑝 ∼ 𝑋, E[𝑋2] = 𝜇, Var[𝑋2] = 𝜎2. E[𝑋2] = 𝜇 = 0 leads to E[𝑋] = 0 and
Var[𝑋2] = Var[𝑋]2, leading to Var[𝑋] = 𝜎 . We tested two such 𝑋: the uniform
𝒰 (±

4√3
√𝐷

) (see Figure 3) and the square-normal N0.5 (0, 1
√6𝐷

) [23] (see Figure 4).

12 https://github.com/tmikolov/word2vec (file word2vec.c, function InitNet)
13 https://github.com/facebookresearch/fastText (file src/fasttext.cc)
14 https://github.com/mir-mu/reproducible-ml (file positional-weighting.ipynb)
15 https://github.com/rare-technologies/gensim-data (release wiki-english-20171001)

The Art of Reproducible Machine Learning 61

Fig. 1. Probability density functions of values in word vectors d𝑝 (left), positional vectors
u𝑝 (middle), and their Hadamard products d𝑝 ⊙ u𝑝 (right) with the same as vanilla word
vectors initialization to 𝒰(0, 1). Since v𝐶 is the average d𝑝, and w𝐶 is the average d𝑝 ⊙ u𝑝,
we conclude that v𝐶 ≫ w𝐶, decreasing the learning rate of positional weighting.

Fig. 2. Probability density functions of values in word vectors d𝑝 (left), positional vectors
u𝑝 (middle), and their Hadamard products d𝑝 ⊙ u𝑝 (right) with the unused initialization
to an empirical approximation of 𝒰0.5(0, 1). We need 𝒰0.5(±1) instead of 𝒰0.5(0, 1).

Fig. 3. Probability density functions of values in word vectors d𝑝 (left), positional vectors
u𝑝 (middle), and their Hadamard products d𝑝 ⊙ u𝑝 (right) with the same as vanilla word
vectors (uniform) initialization to 𝒰(±1).

Fig. 4. Probability density functions of values in word vectors d𝑝 (left), positional vectors
u𝑝 (middle), and their Hadamard products d𝑝 ⊙ u𝑝 (right) with the same as vanilla word
vectors (square-normal) initialization to a finite-sum approximation of N0.5(0, 1).

62 V. Novotný

Table 3. English word analogy task accuracies and training times of word vectors without
positional weighting and with different initializations for positional weighting. The
identity positional vectors initialization is unstable for dimensionality 𝐷 > 600.

Accuracy Training time
No positional weighting 65.52% 2h 06m 33s
No positional weighting (three epochs) 70.94% 4h 41m 17s
Positional weighting, same as vanilla word vectors 50.96% 5h 01m 16s
Positional weighting, identity positional vectors∗ 75.02% 4h 59m 27s
Positional weighting, same as word vectors (uniform) 74.31% 4h 57m 25s
Positional weighting, same as word vectors (sq.-normal) 74.95% 5h 01m 11s

Table 3 shows that up to 24% of word analogy accuracy can depend on the
initialization. The simplest same as vanilla word vectors initialization decreases
the effective learning rate of positional weighing, leading to a 15% decrease in
word analogy accuracy compared to no positional weighting. The second most
obvious identity positional vectors initialization leads to a 9% increase in word
analogy accuracy, but it is numerically unstable for word vector dimensionality
𝐷 > 600. The least obvious same as word vectors initializations also achieve a
9% increase in word analogy accuracy, but they are stable for any word vector
dimensionality 𝐷. Although positional weighting is three times slower, training
with no positional weighting for three epochs only leads to a 5% increase in word
analogy accuracy, which shows the practical usefulness of positional weighting.

To make results reproducible, we suggest that all papers should report the
initialization of weights in their neural networks.

5 Conclusion

With the rapid pace of research in machine learning, the publish-or-perish
mantra of academic publishing, and the ever-increasing complexity of language
models, maintaining a controlled experimental environment is more difficult
than ever. However, identifying and disclosing all confounding variables is
important, since it allows us to reproduce and meaningfully compare results.

Our study shows that even simple log-bilinear svms contain parameters that
are frequently neglected in experiments, although their impact on the results
is significant. We believe that more complex machine learning models such
as Transformers contain dozens of baked-in parameters and implicit weight
initializations that might well be the tipping point towards the singularity.

We hope that our study will make it easier to reproduce both previous and
future word vector experiments, and will serve as an inspiration for upholding
the principles of reproducibility in future research of machine learning.

Acknowledgments. First author’s work was funded by the South Moravian
Centre for International Mobility as a part of the Brno Ph.D. Talent project.

The Art of Reproducible Machine Learning 63

References

1. Berardi, G., Esuli, A., Marcheggiani, D.: Word Embeddings Go to Italy: A Com-
parison of Models and Training Datasets. In: Boldi, P., Perego, R., Sebastiani, F.
(eds.) Italian Information Retrieval Workshop (IIR 2015). Cagliari, Italy (2015), http:
//ceur-ws.org/Vol-1404/paper_11.pdf

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics
5, 135–146 (2017)

3. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction.
Proceedings of GSCL pp. 31–40 (2009)

4. Cardellino, C.: Spanish billion word corpus and embeddings (2016), https://
crscardellino.github.io/SBWCE/

5. Charlet, D., Damnati, G.: Simbow at SemEval-2017 task 3: Soft-cosine semantic
similarity between questions for community question answering. In: Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017). pp. 315–
319 (2017)

6. Chen, X., Liu, Z., Sun, M.: A unified model for word sense representation and
disambiguation. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). pp. 1025–1035 (2014)

7. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word em-
beddings. In: Twenty-Fourth International Joint Conference on Artificial Intelligence
(2015)

8. Clark, K., Khandelwal, U., Levy, O., Manning, C.D.: What does BERT look at? An
analysis of BERT’s attention. arXiv preprint arXiv:1906.04341 (2019)

9. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing
by latent semantic analysis. Journal of the American society for information science
41(6), 391–407 (1990)

10. Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for
157 languages. arXiv preprint arXiv:1802.06893 (2018)

11. Güngör, O., Yıldız, E.: Linguistic features in turkish word representations. In: 2017
25th Signal Processing and Communications Applications Conference (SIU). pp. 1–4.
IEEE (2017)

12. Hartmann, N., Fonseca, E., Shulby, C., Treviso, M., Rodrigues, J., Aluisio, S.: Por-
tuguese word embeddings: Evaluating on word analogies and natural language
tasks. arXiv preprint arXiv:1708.06025 (2017)

13. Heaps, H.S.: Information retrieval, computational and theoretical aspects. Academic
Press (1978)

14. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document
distances. In: International conference on machine learning. pp. 957–966 (2015)

15. Köper, M., Scheible, C., im Walde, S.S.: Multilingual reliability and “semantic”
structure of continuous word spaces. In: Proceedings of the 11th international
conference on computational semantics. pp. 40–45 (2015)

16. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In:
Advances in neural information processing systems. pp. 2177–2185 (2014)

17. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons
learned from word embeddings. Transactions of the Association for Computational
Linguistics 3, 211–225 (2015)

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781 (2013)

64 V. Novotný

19. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation (LREC 2018) (2018)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representa-
tions of words and phrases and their compositionality. In: Advances in neural infor-
mation processing systems. pp. 3111–3119 (2013)

21. Mnih, A., Kavukcuoglu, K.: Learning word embeddings efficiently with noise-
contrastive estimation. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani,
Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems.
vol. 26, pp. 2265–2273. Curran Associates, Inc. (2013), https://proceedings.neurips.
cc/paper/2013/file/db2b4182156b2f1f817860ac9f409ad7-Paper.pdf

22. Novotný, V., Sojka, P., Štefánik, M., Lupták, D.: Three is better than one. In: CEUR
Workshop Proceedings. Thessaloniki, Greece (2020), http://ceur-ws.org/Vol-2696/
paper_235.pdf

23. Pinelis, I.: The exp-normal distribution is infinitely divisible. arXiv preprint
arXiv:1803.09838 (2018)

24. Ravshan, S.K.: Factor analysis and uniform distributions (2018), https://ravshansk.
com/articles/uniform-distribution.html

25. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora.
In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-
works. pp. 45–50. ELRA, Valletta, Malta (May 2010), https://is.muni.cz/publication/
884893/en

26. Rogers, A., Drozd, A., Li, B.: The (too many) problems of analogical reasoning
with word vectors. In: Proceedings of the 6th Joint Conference on Lexical and
Computational Semantics (*SEM 2017). pp. 135–148 (2017)

27. Sen, M.U., Erdogan, H.: Learning word representations for turkish. In: 2014 22nd
Signal Processing and Communications Applications Conference (SIU). pp. 1742–
1745. IEEE (2014)

28. Svoboda, L., Brychcin, T.: New word analogy corpus for exploring embeddings
of czech words. In: International Conference on Intelligent Text Processing and
Computational Linguistics. pp. 103–114. Springer (2016)

29. Unicode Consortium: The Unicode® standard. Mountain view, CA (2020)
30. Venekoski, V., Vankka, J.: Finnish resources for evaluating language model semantics.

In: Proceedings of the 21st Nordic Conference on Computational Linguistics. pp. 231–
236 (2017)

31. Řehůřek, R.: Subspace tracking for latent semantic analysis. In: European Conference
on Information Retrieval. pp. 289–300. Springer (2011)

