
Efficient Management and Optimization of
Very Large Machine Learning Dataset

for Question Answering

Marek Medveď, Radoslav Sabol, and Aleš Horák

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00, Brno, Czech republic
{xmedved1,xsabol,hales}@fi.muni.cz

Abstract. Question answering strategies lean almost exclusively on deep
neural network computations nowadays. Managing a large set of input
data (questions, answers, full documents, metadata) in several forms
suitable as the first layer of a selected network architecture can be a
non-trivial task. In this paper, we present the details and evaluation of
preparing a rich dataset of more than 13 thousand question-answer pairs
with more than 6,500 full documents. We show, how a Python-optimized
database in a network environment was utilized to offer fast responses
based on the 26 GiB database of input data. A global hyperparameter
optimization process with controlled running of thousands of evaluation
experiments to reach a near-optimum setup of the learning process is also
explicated.

Keywords: question answering; dataset management; machine learning;
optimization

1 Introduction

Current hardware and software architectures for neural network computations
are capable of processing tens of thousands of input data units relatively fast,
especially in a situation of distributed processing. However, a bottleneck of such
processing can lie in copying the input data between the computing machines.
Imagine a set of hundreds of possible answers to a question with each answer
as a set of 500-dimensional word vectors including a selected broader context
of the answer. Then in each training epoch the computations need to engage
thousands of such questions from the training set. In case of inefficient storage
and data transfer, such dataset can occupy hundreds of gigabytes which can, of
course, negatively influence the training process running time.

In this paper, the details of the data processing in the answer selection task
with the Simple Question Answering Database (SQAD [1,2]) are presented. The
training and testing process is further enhanced by semi-automatized search of
optimal hyperparameters setup.

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2020, pp. 23–34, 2020. © Tribun EU 2020

24 M. Medveď, R. Sabol and A. Horák

1.1 Data Processing in Related Works
Question answering (QA) systems are particularly developed for the main-
stream languages where a number of datasets are published. A well-known
example of such dataset is the Stanford Question Answering Database
(SQuAD [3]) that was used in more than 80 state-of-the-art works.

In [4], Patel et al enriched the Stanford’s JSON formatted data with sentence
embeddings (trained on large English corpus) using the InferSent tool [5] by the
Facebook research team. The semantic representations of the sentences are then
used to evaluate semantic distance between possible answers and questions.

In [6], Park presented indexing all words inside the Stanford database into an
internal vocabulary and represented all SQuAD records as a list of word indexes
to the internal vocabulary. Finally, Park enriched all words within the vocabulary
by GloVe [7] word vectors.

In [8], Tiutiunnyk decided to store a new Ukrainian QA dataset in the
PostgreSQL database to allow their system direct access to all the dataset
records.

1.2 ZODB Database System
ZODB1 is a transparent Python-object persistence (database) system that is
able to store selected data models (especially classes and objects in the Python
source codes). With comparison to standard relational database systems such,
the ZODB database system is able to store huge hierarchical structures that are
not limited to one data type. Hierarchical databases on the other hand do not
support transactions and are bound with all the restrictions resulting from the
relational model.

In the current implementation of the Czech SQAD database, the ZODB
system is used as the main storage of all the dataset data. This approach
differs from the standard approaches used with the Stanford SQuAD database
mentioned above. Details of the ZODB engagement are further presented in
Section 2.

1.3 Hyperparameter Optimization
The most straightforward approach to neural network hyperparameter opti-
mization is the standard grid search – a technique that involves manual choice
of possible values for each optimized hyperparameter and generating all pos-
sible combinations. This can be computationally expensive as each added hy-
perparameter increases the number of required evaluations exponentially. Grid
search is still available as an option in some major machine learning libraries
(e.g. scikit-learn [9] or Optuna [10]).

Random search is designed to replace the exhaustive enumeration by taking
random samples of hyperparameter values in the search space. The number of
trials is typically limited by a pre-defined constant, see e.g. HyperOpt [11] or
Optuna [10].

1 http://www.zodb.org/en/latest/

Efficient Management and Optimization of Very Large QA Dataset 25

Original text:
Ngoni (někdy též n’goni) je strunný hudební nástroj oblíbený v západní Africe. Někdy bývá
označován jako primitivní předchůdce banja. Velikostí se ale podobá spíše ukulele. ...
[Ngoni (also called n’goni) is a string musical instrument popular in west Africa. It may be
considered as a primitive predocessor of banjo. But according to its size it is more similar to
ukulele. ...]
Question:
Jakého typu je hudební nástroj ngoni?
[What kind of musical instrument is ngoni?]
Answer:
strunný hudební nástroj
[string musical instrument]
URL:
https://cs.wikipedia.org/wiki/Ngoni
Author:
login
Question type:
ADJ_PHRASE
Question type:
OTHER
Answer selection:
Ngoni (někdy též n’goni) je strunný hudební nástroj oblíbený v západní Africe.
[Ngoni (also called n’goni) is a string musical instrument popular in west Africa.]
Answer extraction:
strunný hudební nástroj
[string musical instrument]

Fig. 1. Example of the SQAD record No. 012878

The main downside of the aforementioned techniques is that they do not
utilize the information from past trials. The Sequential model-based optimization
(SMBO) tries to overcome this limitation by iteratively selecting the hyperpa-
rameters from the search space using a probabilistic model to minimise/max-
imise an objective function. The most commonly used probabilistic models
are Tree-structured Parzen Estimators (in Optuna [10], HyperOpt [11], Ray-
Tune [12]) and Gaussian processes (in GPyOpt [13]). One of the less commonly
used models are Gradient Boosting (in scikit-learn [9]) and Random Forests (in
TuneRanger [14]).

2 Managing Very Large Machine Learning Dataset

In this section, the implementation of the Czech SQAD dataset storage using
the ZODB system is presented. ZODB allows fast access to the SQAD data and
efficiently stores all data from the SQAD database raw records in the final form
required by the AQA question answering system [15].

The ZODB database system is able to store Python objects without a need of
extra format conversion, ZODB loads Python objects directly from the database.

26 M. Medveď, R. Sabol and A. Horák

word lemma tag
Ngoni Ngoni k1gNnSc1
((kIx(
někdy někdy k6eAd1
též též k9
...

Fig. 2. An example of the vertical format of POS-tagged text in SQAD.

word NE tag
...
přestoupil O
do O
Sparty B
Praha I
...

Fig. 3. Example of Link named entity training data: O – regular word, B – beginning of
named entity, I – continuation of named entity.

Currently, ZODB is used to store the complete SQAD database records.2 In
addition to raw POS-tagged texts, the SQAD database contains all important
information derived from texts. In the source form [16], the SQAD database
consists of several files per record. The data files within the SQAD database
contain morphologically and lexically analyzed text in vertical format 3 that
are converted into the SQAD-ZODB (fusion of SQAD data and ZODB database
system) database.

Along with the original information stored in the SQAD database, the
new SQAD-ZODB database contains several additional information that are
important for different modules inside the AQA system. These additional
features are automatically computed from the original source data:

– word vectors – to boost the training procedure in the AQA answer selection
module the new SQAD-ZODB database stores pre-computed word vectors
pre-trained from large Czech corpora using the word2vec algorithm. In
the current version, the SQAD-ZODB database stores 100-, 300- and 500-
dimensional word vectors of each word. This allows a fast access to word
vectors and flexibility in the training process of the answer selection module.

– list of sentences containing exact answer – during building SQAD-ZODB, the
list of sentences that contain the exact answer is computed. This information
is then used in the evaluation process of the answer selection module.

– list of similar answers – TF-IDF similarity scores between all sentences withing
the record full text are computed. These scores are then used to fine tune

2 See a SQAD record example in Figure 1.
3 See Table 2 for an example.

Efficient Management and Optimization of Very Large QA Dataset 27

f(w_id2word):
- {w_id: {‘word’: str, ‘lemma’: str, ‘tag’: str}

f(word2w_id):
- {‘word|lemma|tag’: w_id}

f(w_id2vector):
- {w_id: {‘100’: tensor, ‘300’: tensor, ‘500’: tensor}}

Vocabulary

f(id2qa_type): {id: str}
f(qa_type2id): {‘type(str)’: id}

QA types

{rec_id1: get_rec(rec_id1),
 rec_id2: get_rec(rec_id2),
 ...
 ctx:types: [type1, …, typen]}

Database

● record id = str
● text = url
● answer selection position in text = int
● sentences containing exact answer = [sent_id, ...]
● similar_answers = {sent_id: sim_score, ...}
● question = [w_idi, .., w_idj]
● answer selection = [w_idk, .., w_idl]
● answer extraction = [w_idu, .., w_idv]
● question type = id
● answer type = id

{url1: {‘title’: [w_idx, .., w_idy],
 ‘text’:[{‘sent’: [w_id1, .., w_idn],
 ‘ctx’: {‘ctx_type1’: [[w_ida, ..., w_idb], ...], ctx_type2: ...}
 },
 …
]
 }
 …
}

Knowledge base Record

Fig. 4. The database structure of SQAD-ZODB.

the training setup of the answer selection module where the most similar
negative sentences are used to boost the module ability to identify the
correct answer within a list of very similar sentences.

– answer context – the task of identifying the main answer sentence is difficult
mainly due to anaphoric expressions which “hide” the relevant entities
by pronominal references. To supplement the neural network decision
process, an information about the sentence context is provided to the answer
selection module. To speed up the whole training process, the SQAD-ZODB
database contains several types of context pre-computed from the original
data. In the current version, the SQAD-ZODB database contains three types
of contexts (more context types are to be added in the future work):

• previous sentences – the context of 𝑁 full sentences is added to each
input article sentence.

• phrases from previous sentences – using the rule-based SET parser [17],
the system is able to identify all possible noun phrases within each
sentence. 𝑀 noun phrases from each of 𝑁 preceding sentences are stored
as the second context type.

• “link named entities” from previous sentences form the third type of
sentence context. See details in Section 2.1.

2.1 Link named entities

Link named entities (LNEs) are a specific type of standard named entities with
regard to the information often expressed in questions and answers. LNEs are

28 M. Medveď, R. Sabol and A. Horák

defined as entities that are labeled with Wikipedia internal links. Inside each
Wikipedia article, links that refer to other Wikipedia articles identify entities
which are often significant in denoting an important piece of information. LNEs
are identified in general texts by training a named-entity recognition (NER)
system4 with the whole Czech Wikipedia, where for each sentence all link
named entities are marked, see Table 3 for an example. The final NER module is
applied to the SQAD database and provides information about recognized link
named entities which are used as a sentence context.

2.2 The SQAD-ZODB Architecture

The architecture of the current SQAD data in the ZODB database system is
displayed in Figure 4. At the first level, the SQAD-ZODB database stores all
records IDs and a function that builds the record content form 4 database parts
(tables).

The Record object stores ten most critical information. Each Record ID is a
unique identifier of a SQAD record.

The Text variable contains a unique URL that points to specific article inside
the Knowledge base table. Thus for multiple records concerning one Wikipedia
article, the database do not need to store that same article twice.

The Answer selection position stores an index of the sentence that contains the
expected answer (used in the training part of the answer selection module).

Sentences containing exact answer is a list of sentence IDs that contain the exact
answer (used in the training phase of the answer selection module where the
system excludes these sentences as negative examples).

Similar answers is a list of similar sentences with their similarity scores (used
to train the module to distinguish the correct answer within a list of very similar
sentences).

Question, answer selection, answer extraction are lists of words IDs. Each word
ID can be transformed into word, lemma, POS tag, 100-, 300- or 500-dimensional
vector using the Vocabulary table.

The last two record features question type and answer type are also IDs pointing
to specific question and answer type using the QA types table.

The Knowledge base table stores all articles used within the SQAD database.
Avoiding duplicates and storing only list of the words IDs makes the knowledge
base compact while maintaining all important information.

2.3 Updating the SQAD-ZODB Database

Due to the database transaction support in ZODB, updating the database
is a straightforward task. After establishing a connection to the database, a
user can add new records or add new features to existing records. In the
SQAD development process, each new feature is a standalone script that can
supplement the database with a single new feature of each record. The current
transformation system consist of:

4 The BERT-NER from https://github.com/kamalkraj/BERT-NER is currently used.

Efficient Management and Optimization of Very Large QA Dataset 29

Table 1. Running times (in seconds) for a random sample of 100 queries. w – word, l –
lemma, t – morphological tag, v1 – 100-dimensional vector, v3 – 300-dimensional vector,
v5 – 500-dimensional vector.

Preloaded vocabulary Not preloaded vocabulary
init 12.44 w;l;t 1.63 w;l;t;v5 3.13 init 5.74 w;l;t 2.86 w;l;t;v5 5.05
w 13.21 w;l;v1 3.00 w;l;v1;v3 3.40 w 7.17 w;l;v1 4.58 w;l;v1;v3 5.43
l 2.02 w;l;v3 2.99 w;l;v1;v5 3.40 l 2.25 w;l;v3 4.58 w;l;v1;v5 5.45
t 1.42 w;l;v5 3.00 w;l;v3;v5 3.41 t 2.25 w;l;v5 4.59 w;l;v3;v5 5.47
v1 4.78 w;t;v1 3.00 w;t;v1;v3 3.40 v1 7.32 w;t;v1 4.75 w;t;v1;v3 5.46
v3 2.61 w;t;v3 3.03 w;t;v1;v5 3.42 v3 3.34 w;t;v3 4.63 w;t;v1;v5 5.47
v5 2.61 w;t;v5 2.58 w;t;v3;v5 3.01 v5 3.33 w;t;v5 4.59 w;t;v3;v5 5.45
w;l 1.53 w;v1;v3 3.30 w;v1;v3;v5 3.68 w;l 2.76 w;v1;v3 4.95 w;v1;v3;v5 5.77
w;t 1.95 w;v1;v5 3.28 l;t;v1;v3 3.40 w;t 2.41 w;v1;v5 4.95 l;t;v1;v3 5.47
w;v1 2.91 w;v3;v5 3.29 l;t;v1;v5 3.44 w;v1 4.11 w;v3;v5 4.95 l;t;v1;v5 5.49
w;v3 2.86 l;t;v1 3.01 l;t;v3;v5 3.41 w;v3 4.15 l;t;v1 4.60 l;t;v3;v5 5.45
w;v5 2.48 l;t;v3 3.01 l;v1;v3;v5 3.70 w;v5 4.10 l;t;v3 4.65 l;v1;v3;v5 5.76
l;t 1.94 l;t;v5 2.98 t;v1;v3;v5 3.71 l;t 2.75 l;t;v5 4.61 t;v1;v3;v5 5.76
l;v1 2.88 l;v1;v3 2.89 w;l;t;v1;v3 3.50 l;v1 4.11 l;v1;v3 4.94 w;l;t;v1;v3 5.87
l;v3 2.87 l;v1;v5 3.30 w;l;t;v1;v5 3.09 l;v3 4.11 l;v1;v5 4.96 w;l;t;v1;v5 5.92
l;v5 2.92 l;v3;v5 3.28 w;l;t;v3;v5 3.54 l;v5 4.13 l;v3;v5 4.98 w;l;t;v3;v5 5.89
t;v1 2.60 t;v1;v3 3.30 w;l;v1;v3;v5 3.80 t;v1 4.11 t;v1;v3 4.95 w;l;v1;v3;v5 5.88
t;v3 2.96 t;v1;v5 3.33 w;t;v1;v3;v5 3.81 t;v3 4.11 t;v1;v5 4.98 w;t;v1;v3;v5 6.25
t;v5 2.88 t;v3;v5 3.30 l;t;v1;v3;v5 3.81 t;v5 4.11 t;v3;v5 4.60 l;t;v1;v3;v5 6.24
v1;v3 3.08 v1;v3;v5 3.55 w;l;t;v1;v3;v5 4.03 v1;v3 4.24 v1;v3;v5 5.09 w;l;t;v1;v3;v5 6.86
v1;v5 3.06 w;l;t;v1 2.72 v1;v5 4.27 w;l;t;v1 5.08
v3;v5 3.06 w;l;t;v3 3.08 v3;v5 4.22 w;l;t;v3 5.05
total time 3m 38s total time 5m 9s

– sqad2zodb transforms all records from the original SQAD source to the
SQAD-ZODB database and adds pre-computed vectors to each word.

– add_similar_sentences enhances each record with the list of similar sentences.
– add_sentences_containing_exact_answer adds a list of sentences that contain

the expected answer to the record.
– context_previous_sentences for each sentence in the article adds 𝑁 preceding

sentences as a context (where 𝑁 is a user-defined parameter).
– context_noun_phrases for each sentence in the article adds 𝑀 phrases for each

of 𝑁 preceding sentences.
– context_ner for each sentence in the article adds all link named entities

recognized in 𝑁 preceding sentences.

That is how each new record feature can be developed and tested separately.

30 M. Medveď, R. Sabol and A. Horák

2.4 SQAD-ZODB Performance

In the transformation process from SQAD to SQAD-ZODB, the database inter-
face allows the training workers to transfer only those pieces of information that
are required for the training process. The choice of the right information can
greatly influence the data transfer running times. Table 1 summarizes the times
needed to transfer different parts of the record.

The running times are proportional to the amount of data that need to be
transferred. The efficiency of the ZODB storage is depicted by comparing the
space requirements of the SQAD database in three formats are presented in
Table 2.

2.5 SQAD-ZODB over Network

The SQAD-ZODB database is particularly used in the answer selection module.
The training and hyperparameter optimization of this module requires a large
amount of training setups to be tested. To speed up the training by distributing
the process to multiple GPU-based servers, the SQAD-ZODB database was
implemented within the ZEO5 (Zope Enterprise Objects) library that allows to
run the database in the client-server mode over network.

3 Large-scale Optimization of Machine Learning
Hyperparameters

When training machine learning models, hyperparameter optimization is one
of the key steps required to achieve acceptable performance. However, this pro-
cess requires considerable efforts, especially in large search spaces of hyperpa-
rameter values. A variety of tools and libraries were developed to automate this
process, employing sophisticated algorithms to achieve the task.

3.1 About Optuna

Optuna [10] is a relatively new hyperparameter optimization framework that
aims to provide a simple setup for defining hyperparameter search spaces

5 http://www.zodb.org/en/latest/articles/old-guide/zeo.html

Table 2. Disk usage for various storage methods. Plain text refers to the original plain text
form of SQADv3 with all the pre-computed vectors. Pickle is a serialized dataset (using
the Python pickle library) with only the necessary data to train models using the 500-
dimensional embeddings.

Representation Disk usage
Plain text 1,312.89 GB
Pickle 240.20 GB
SQAD-ZODB 25.08 GB

Efficient Management and Optimization of Very Large QA Dataset 31

Fig. 5. Comparison of hyperparameter optimization frameworks in terms of available
features [10].

while being highly customizable. The parameter search spaces are defined using
the define-by-run approach which allows the search spaces to be created and
adjusted dynamically at runtime.

The Optuna framework is highly scalable from simple experimental compu-
tations to large-scale distributed optimizations. In order to accomplish this flex-
ibility, Optuna supports many result storage forms like in-memory database,
SQLite databases, or PostresSQL databases.

Optuna also includes a support for pruning algorithms that monitor interme-
diate values for the objective, and terminate a trial if a user-defined condition is
not met. This premature termination is useful for saving time from unpromising
trials.

3.2 Optuna and Answer Selection

In this section, we present improved results for the AQA answer selection task
achieved using the Optuna library. Overall, 1,507 setups were trained in a fully
automated fashion. In order to define the search space, a set of hyperparameters
and their values was identified as affecting the model performance as displayed
in Table 3.

The objective to maximize was the Mean Average Precision (MAP) of each
trial. Out of the 1,506 trials, 455 were succesful (reached the evaluation on

Table 3. Hyperparameter values search space for the answer selection model

Hyperparameter name Optuna distribution used Range of values
BiGRU hidden size discrete uniform 100-600 with the step of 20
Dropout discrete uniform 0.0-0.6 with the step of 0.1
Batch size categorical 1, 2, 4, 8, 16, 32, 64, 128, 256
Optimizer categorical Adam, Adagrad, Adadelta, SGD
Learning rate logarithmic uniform from 10−4 to 10−1

Embedding dimension categorical 300, 500

32 M. Medveď, R. Sabol and A. Horák

77
67 63

47
37

27
39

72
82 80

70

96 95 97 96

Fig. 6. Increase in MAP and MRR measured over 1,506 recorded runs. The histogram
displays the amount of errors/prunes in the groups of 100.

test set), 365 were pruned, and 686 were errors due to GPU out-of-memory
exception.

The most successful setup reached MAP of 83.13 and MRR of 88.99, which is
an increase of 0.8 percent when compared to last published result (MAP of 82.33).
The best trial’s setup uses the embedding dimension of 300, BiGRU hidden size
of 520, the dropout probability of 0.3, the batch size of 4 (with each sentence in
the document used), the Adagrad optimizer with the learning rate set to 0.0042.

If we compare the result with the best model setup that uses the 300-
dimensional embeddings, the current best setup has achieved an increase of
1.15% (versus MAP of 81.92). Unfortunately due to many erroneous trials
with 500-dimensional word embeddings, Optuna’s search was more focused in
optimization with 300-dimensional embeddings instead.

4 Conclusions and Future Work

In the paper, we have presented the details of managing the efficient storage
and data transfer of very large question answering dataset. The implementation
using the ZODB database framework allows fast data distribution for network-
based training and hyperparameter optimization computations.

Using the Optuna parameter optimization framework we have achieved a 0.8
percent MAP increase over the previous published results where the parameters
were optimized manually. The future efforts will aim towards decreasing the
amounts of erroneous trials. One of the solutions is to carefully select the
paramaters in the search space to fit the available GPU memory. In order to
eliminate the bias towards lower embedding dimensions, separate studies can
be constructed for each embedding dimension available.

Efficient Management and Optimization of Very Large QA Dataset 33

Acknowledgements. This work has been partly supported by the Czech Science
Foundation under the project GA18-23891S. Access to computing and storage
facilities owned by parties and projects contributing to the National Grid Infras-
tructure MetaCentrum provided under the programme ”Projects of Large Re-
search, Development, and Innovations Infrastructures” (CESNET LM2015042),
is greatly appreciated.

References
1. Sabol, R., Medveď, M., Horák, A.: Czech question answering with extended SQAD

v3.0 benchmark dataset. (2019) 99–108
2. Medveď, M., Horák, A., Sabol, R.: Improving RNN-based answer selection for mor-

phologically rich languages. In: Proceedings of the 12th International Conference on
Agents and Artificial Intelligence (ICAART 2020), Valetta, Malta, SCITEPRESS (2020)
644–651

3. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

4. Patel, D., Raval, P., Parikh, R., Shastri, Y.: Comparative study of machine learning
models and BERT on SQuAD (2020)

5. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of
universal sentence representations from natural language inference data (2018)

6. Park, D.H.: Question answering on the squad dataset. (2017)
7. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global vectors for word represen-

tation. In: In EMNLP. (2014)
8. Tiutiunnyk, S.: Context-based question-answering system for the Ukrainian lan-

guage. (2020)
9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12 (2011) 2825–2830

10. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. (2019) 2623–2631

11. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms, Citeseer (2013)

12. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: A
research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118 (2018)

13. authors, T.G.: Gpyopt: A bayesian optimization framework in Python. http://
github.com/SheffieldML/GPyOpt (2016)

14. Probst, P., Wright, M., Boulesteix, A.L.: Hyperparameters and tuning strategies
for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery (2018)

15. Medveď, M., Horák, A.: Sentence and word embedding employed in open question-
answering. In: Proceedings of the 10th International Conference on Agents and
Artificial Intelligence (ICAART 2018), Setúbal, Portugal, SCITEPRESS - Science and
Technology Publications (2018) 486–492

16. Horák, A., Medveď, M.: SQAD: Simple question answering database. In: Eighth
Workshop on Recent Advances in Slavonic Natural Language Processing, Brno,
Tribun EU (2014) 121–128

34 M. Medveď, R. Sabol and A. Horák

17. Kovář, V., Horák, A., Jakubíček, M.: Syntactic analysis using finite patterns: A new
parsing system for Czech. In: Language and Technology Conference, Springer (2009)
161–171

