
SiLi Index: Data Structure for Fast Vector Space
Searching

Ondřej Herman and Pavel Rychlý

Faculty of Informatics
Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
{xherman1,pary}@fi.muni.cz

Abstract. Nearest neighbor queries in high-dimensional spaces are ex-
pensive. In this article, we propose a method of building and querying a
stand-alone data structure, SiLi (Similarity List) Index, which supports ap-
proximating the results of k-NN queries in high-dimensional spaces, while
using a significantly reduced amount of system memory and processor
time compared to the usual brute-force search methods.

Keywords: word embeddings, vector space, semantic similarity

1 Introduction

1.1 Motivation

Vector space models have been central to the field of natural language processing
for a long time, ranging from traditional sparse and high-dimensional bag-of-
words document representations, where the vector space co-ordinates represent
different words or phrases with tens of thousands of dimensions, to recent dense
embeddings, which typically operate on hundreds of dimensions. The particular
dimensions usually do not have clear interpretation, but as in the case of [2], the
structure of the vector space has some interesting and useful properties.
Main operations of interest operating on dense vector spaces are the following:

1. Pairwise similarity – given two elements of the vector space, quantify their
similarity.

2. k-nearest neighbor queries – given an element of the vector space, retrieve
k most similar elements.

3. Analogy queries – given three elements, a, a*, and b, retrieve k candidate
elements b* which satisfy the following criterion: a is to a* as b is to b*.

Evaluating pairwise similarity of two elements is cheap, as it is enough to retrieve
the elements and then calculate the similarity. When the elements are stored in
secondary storage, this means two seek operations and a single evaluation of
similarity.

k-nearest neighbor query is significantly more demanding. The typical and
widely deployed naïve algorithm calculates the pairwise similarity between the

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2019, pp. 111–116, 2019. © Tribun EU 2019

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://www.muni.cz/people/60380
http://raslan2019.nlp-consulting.net/


112 O. Herman and P. Rychlý

query vector and every other element of the vector space and then selects the
top k most similar elements. Processor performance is usually not the limiting
factor in this case. The vectors to be compared need to be loaded from storage.
Even the cost of transferring the model to the processor has significant cost.

For example, a fastText model calculated for the word attribute of the
enTenTen 2013 corpus [3] has over 6 million distinct elements, which represent
all corpus lexicon entries, which occur in the corpus at least five times. The sizes
of the model for different vector lengths are:

Dimension Datatype Total size Note
100 float32 2.540 GiB
300 float32 7.620 GiB
500 float32 12.700 GiB
500 float16 6.350 GiB non-native datatype, slow

A recent desktop computer (as of 2019) has approximately 50 GiB/s of available
bandwidth between the processor and main memory, so even when the model of
dimension 100 is used, the rate at which the queries can be evaluated is limited
to 20 per second by memory transfers alone.

The performance of evaluating analogy queries is comparable, as an analogy
query can be transformed to the k-nearest neighbor query in the following way:
given the query a is to a* as b is to b* where b* is the vector we are looking for, a
new vector v is calculated as v = b− a + a∗ and then a k-nearest neighbor query
around v is evaluated.

As can be seen, to obtain reasonable performance, the vector space elements
to be searched need to be stored in main system memory – streaming the
results from secondary storage would mean slowdown of two to three orders of
magnitude.

2 Description

The main idea, on which the SiLi Index is based, is that it is not necessary to
store the elements of the vector space themselves, but only the results of the
k-nearest neighbor queries for every element.

2.1 Structure

The current version of the structure consists of three parts: the main record
array, which stores nearest neighbors for every vector, an index, which provides
mapping from numerical IDs to record array positions to enable fast lookups,
and an external lexicon, which is a mapping between the lexicon elements and
their IDs.

The lexicon is stored as a text file, with two lines of metadata. The first line
describes the amount of elements contained in the model, while the second line
is the dimensionality of the original vector space. The rest of the lines in the file
are strings – lexicon elements, ordered by the frequency at which they appear in



SiLi Index: Data Structure for Fast Vector Space Searching 113

the source corpus, with the IDs being implicitly encoded as the position of the
lexicon element in the file:

6658558
100
the
.
,
to
and
of
a
in
is
that

...

The main data file consists of variable length records. Every record has a header,
which contains two 4 byte values: the ID of the vector space element which is
represented by the current vector, and the number n of the most similar elements
stored in the record. Then follow n pairs of 4 byte integers, representing the
n most similar elements and their similarities, ordered by the similarity in
descending order. The maximum similarity is represented as the value of 220,
while the minimum would be 0. For example, the record for the first element in
the model build from enTenTen13 [3] would be:

Address ID Number of elements
Neighbor ID Similarity

0x000000 0 500
0x000008 0 1048575
0x000010 5 861673
0x000018 7 807157
0x000020 18 755537
0x000028 92 750653
0x000030 24 746858
0x000038 196 736494
0x000040 52 735677
0x000048 1 723016

...
...

The third part of the structure maps the lexicon elements to the positions in the
record array. The mapping from the lexicon IDs to positions is a flat binary table,
where every element is an 8 byte long offset into the main data file. This way,
only a single random access to the file is needed to locate the position in the
main data file. The portion of this mapping corresponding to the portion of the
lexicon as shown above would be:



114 O. Herman and P. Rychlý

Address Offset
0x000000 0
0x000008 501
0x000010 1002
0x000018 1503
0x000020 2004
0x000028 2505
0x000030 3006
0x000038 3507
0x000040 4008
0x000048 4509

...
...

2.2 Generation

The SiLi Index consists of the most most similar elements for every word.
Therefore, efficient calculation of similarities between all pairs of elements is
essential. Common similarity measure is cosine similarity. If the vector space
elements are normalized, this task reduces to matrix multiplication. The whole
result is, however, very big, and would not fit in main memory. To work around
this, we calculate similarities in batches, between a 100-element band and every
element in the vector space. The resulting SiLi index for the enTenTen13 corpus
consisting of 6658558 distinct elements was calculated in 75 m 38.690 s of wall-
clock time.

2.3 k-nearest neighbor queries

Retrieving k neighbors is trivial. First, the query string is translated to the ID
using the lexicon file. Then, the corresponding offset is located in the offset table,
which points to the location at which the actual record is stored in the main data
file. If the lexicon is loaded in main memory, this means two seek operations,
compared to the need to scan the whole model in the case of dense storage of
word embeddings. The main memory requirements are much smaller.

2.4 Analogy Queries

Surprisingly, it is possible to evaluate analogy queries using only the information
about nearest neighbors of the elements. The query a is to a* as b is to b*, where b
is the element to be found, we need retrieve the list of nearest neighbours of a, a*
and b*, then calculate the intersection of these lists and evaluate the resulting
similarity – we optimize

arg max
b∗

(sim(b∗, b− a + a∗))

To evaluate similarity between two vectors, we use cosine similarity, defined as

sim(u, v) = cos(u, v) =
u · v

‖u‖ · ‖v‖



SiLi Index: Data Structure for Fast Vector Space Searching 115

Following the work of Mikolov et al. ([5]), we normalize the embedding vectors,
so the similarity measure can be simplified to sim(u, v) = u · v. Using basic
algebra, the first equation can then be transformed ([6,4]) to the form

arg max
b∗

(b∗ · b− b∗ · a + b∗ · a∗)

We store the cosine similarities of normalized vectors in the SiLi index, therefore
b∗ · b, b∗ · a and b∗ · a∗ can be extracted from the records for the elements b, a and
a∗ respectively. This way, many analogy queries can be evaluated, alleviating
the need for storage of the complete embeddings.

2.5 Future Work

Currently, we store 500 nearest neighbors for every element in the vector space.
This is likely unnecessary. Storing an adaptive amount of neighbors depending
on the frequency of the word and its neighbor would likely result only in
marginal loss of recall and accuracy of the model. Another interesting signal
is the specific distribution of the neighbors of a specific word. However, we
found that the distribution itself is not correlated with frequency of the lexicon
elements (1), so more research on this topic would be necessary.

The headers in the main record array are not necessary, but currently are
kept for completeness, as the record array can be used without the mapping
table, or the mapping table could be recovered from it. Another source of
inefficiency is the storage of the similarity in 4 bytes, even though the amount of
useful information contained in this value is significantly lower. However, the
current format is aligned and easily machine readable. The influence of different
encodings with respect to performance of the model needs to be evaluated.

Perhaps the most significant improvement would be obtained by creating
a new record type for rare lexicon elements, where only a very small amount
of the representants would be stored, between 1 to 5. The queries would be
carried through these representants. The result would not be exact for the low
frequency lexicon elements anymore, but would yield result with lower and
upper bounds on the similarity. Rare words usually do not have high-quality
embeddings, so this might not cause significant issues. The drawback of this
approach is however reduced performance, as more seeks to the underlying
storage would need to be carried out.

Some other approaches employing locally sensitive hashing show promise,
but we find them overly complex, such as the FALCONN library ([1]).

3 Conclusion

We presented a data structure, SiLi Index, and accompanying algorithms
which enable efficient k-nearest neighbor query evaluation from data stored
on secondary storage. The data structure can also support many important
instances of analogy queries.



116 O. Herman and P. Rychlý

0.0 0.2 0.4 0.6
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

100000-100010
10000-10010
1000-1010
100-110
1-10

Fig. 1: Cumulative distribution of vector similarities for different rank bands for
the word embedding model calculated using fastText on the enTenTen13 corpus.

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT-Clarin infrastructure LM2015071. This project has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731015.

References

1. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., Schmidt, L.: Practical and optimal
lsh for angular distance. In: Advances in Neural Information Processing Systems. pp.
1225–1233 (2015)

2. Grave, E., Mikolov, T., Joulin, A., Bojanowski, P.: Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics, EACL. pp. 3–7 (2017)

3. Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlỳ, P., Suchomel, V.: The tenten corpus
family. In: Proceedings of the 7th International Corpus Linguistics Conference CL. pp.
125–127 (2013)

4. Levy, O., Goldberg, Y.: Linguistic regularities in sparse and explicit word representa-
tions. In: Proceedings of the eighteenth conference on computational natural language
learning. pp. 171–180 (2014)

5. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: Advances in neural information
processing systems. pp. 3111–3119 (2013)

6. Rychlỳ, P.: Evaluation of the sketch engine thesaurus on analogy queries. RASLAN
2016 Recent Advances in Slavonic Natural Language Processing p. 147 (2016)


