
Recent Advancements of the New Online
Proofreader of Czech

Vojtěch Mrkývka

Faculty of Arts, Masaryk University
Arne Nováka 1, 602 00 Brno, Czech Republic

mrkyvka@phil.muni.cz

Abstract. On the previous RASLAN workshop, the basis of the new online
proofreader for the Czech language was presented. This paper describes
the current status quo of this tool as well as describes changes necessary
due to alterations of the assignment.

Keywords: grammar checker, text analysis, proofreading, Czech

1 Introduction

The new online proofreader is being developed at the Masaryk University (with
the help from external experts) since 2018. The motivation to do so is the parallel
development of separate rulesets for finding different types of mistakes in the
Czech language[3] (for example spelling, commas or agreement) using SET
analyser[1] as well as lack of real proofreading tool for the online environment.
The previous paper, Towards the New Czech Grammar-checker1[2], compared the
new proofreader with the proofreading capabilities of Microsoft Office Word
as described in Kontrola české gramatiky (český grammar checker) by Vladimír
Petkevič[4], seeing differences in approach to mistakes and their highlighting as
well as to the licencing of the final product.

2 The original approach

The first version of the proofreader was implemented as part of the TinyMCE
online text processor.2 It consisted of separate modules with limited mutual
dependency (see fig. 1), but with strong connections to the editor itself.3 The
major part was written in JavaScript with connection to Python backend when
necessary.

1 There was a dispute whether to use expression grammar-checker, Grammar Checker,
proofreader or something else as authors of different components used this inconsis-
tently. In May of 2019, the consensus was reached and the Online Proofreader is used
since. Sorry for the inconvenience.

2 https://www.tiny.cloud/
3 For a more detailed description read already mentioned Towards the New Czech Grammar-

checker.

A. Horák, P. Rychlý, A. Rambousek (eds.): Proceedings of Recent Advances in Slavonic Natural Language
Processing, RASLAN 2019, pp. 43–47, 2019. © Tribun EU 2019

https://www.tiny.cloud/
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://www.muni.cz/people/60380
http://raslan2019.nlp-consulting.net/


44 V. Mrkývka

The main advantage of this approach was that the different components
(existing and new) could have been independently developed and also the new
versions of these components could be independently released. This, however,
led to problems when the need of improvement touched some of the core
functionalities (such as the mistake manager). Additionally, this approach was
unpleasant from the end-user point of view as the installation and maintaining
process was not very intuitive.

Fig. 1: The workflow diagram of the first version of the proofreader. Components
depicted in white are separate TinyMCE modules. The horizontal axis suggests
time.

Commas module

Tokenization module Lemmatization module

Commas backend

Spelling module

Vocalization module

Spelling backend

Mistake managment module

Tokenization backend Lemmatization backend

3 The JavaScript-first approach

Learning from the previous mistakes, the second version, although created as
separate JavaScript files, worked independently on the TinyMCE. This approach
allowed to adapt the proofreader for other environments. Additionally, when
used in one, the compatible versions of components could have been used and
distributed as a single module (see fig. 2).

Because of the (at the time unknown) demand to use the proofreader in other
environments than the browser applications, the development of the second
version had to be cancelled as it would be unsustainable with these conditions.

4 The Python API approach

Currently in development is the third version of the proofreader created as an
application programming interface written in Python. This provides a unified
access point to be used in browser-based and non-browser based applications
alike. The API-based approach also creates natural way to test the proofreader
with large portion of texts as it does provide single machine-readable output.
Along with the new approach, new features are presented as well as solutions to
the existing problems.



Recent Advancements of the New Online Proofreader of Czech 45

Fig. 2: The workflow diagram of the second version of the proofreader. Elements
depicted in white are components of the single module (where frontend means
universal interface and adapter adaptation of the universal data to the TinyMCE
specific environment). The horizontal axis suggests time.

Commas frontend

Tokenization frontend Lemmatization frontend Commas backend

Spelling frontend

Vocalization frontend

Spelling backend

Mistake managment component

Tokenization backend Lemmatization backend

Tokenization adapter Commas adapter

Spelling adapter

Module body

Lemmatization adapter

Vocalization adapter

4.1 Alternative tagger

The new version of the proofreader includes the alternative option to lemmatisa-
tion and tagging – MorphoDiTa[6] – and currently is being tested as an alternative
to the combination of majka (lemmatiser and tagger)[8] and DESAMB[7] (disam-
biguator) which was used in previous versions.

The main problem with implementation is that the tagsets used by majka
and MorphoDiTa differ in formal properties (attributive vs positional) as well
as in encoded information. It follows that these two tagsets are not mutually
convertible without losing some of the information provided. Conversion,
however, has to be done since rulesets created for majority of proofreading
components are dependent on majka’s attributive tags. Similarly, some of
the components need to have the source text separated into sentences. This
information is not provided by MorphoDiTa. For the testing purposes, I used
majka to help with sentence limits knowing it will need to be altered in the
future to achieve better performance. A secondary problem is the attachment
of additional information to the lemma such as lemma category (link to the
PDT – Prague dependency treebank); thus the final output is for example
jet-1_ˆ(pohybovat_se,_ne_však_chůzí) instead of simple jet. This was
resolved with a simple regular expression.

4.2 Asynchronicity and performance

Due to the single-query nature of the API, it is not possible to have mistakes
displayed gradually depending on the time different components finish their



46 V. Mrkývka

processing, but there has to be single output. However, an advantage of this
approach is that there is higher pressure to make individual proofreading
components faster. Besides, although the output can be only singular, the idea
of asynchronicity and parallel processing of the output was preserved using the
asyncio module, which was included into Python standard library in version 3.4.

Performance-wise there is a higher focus on the inner workings of Python, to
achieve better speed. For example information about tagged words are stored as
named tuple (from the collections module of the Python standard library) instead
of widely-used dictionary keeping the data smaller memory-wise, but preserving
the same readability.[5] See the following example for the sentence Jak se máš?:

[TaggedWord(word=’Jak’, lemma=’jak’, tag=’k6eAd1’, type=’WORD’),
TaggedWord(word=’ ’, lemma=’’, tag=’’, type=’WHITESPACE’),
TaggedWord(word=’se’, lemma=’se’, tag=’k3xPyFc4’, type=’WORD’),
TaggedWord(word=’ ’, lemma=’’, tag=’’, type=’WHITESPACE’),
TaggedWord(word=’máš’, lemma=’mít’,

tag=’k5eAaImIp2nS’, type=’WORD’),
TaggedWord(word=’?’, lemma=’?’,

tag=’kIx.’, type=’MULTICHAR_PUNCTUATION’)]

To keep the way to further optimisation open, the crucial components, such
as the mistake manager, are wrapped inside the class, providing consistent
output despite alterations of their inner workings.

4.3 Updates on proofreading components

As the structure of the proofreader changed heavily from the first version, the
proofreading components had to be reworked as well. As the majority of these
components used SET analyser as part of their doing, the adaptation was a
relatively simple alteration of the backend part of the original component. Some
of the components were updated with improved rulesets to provide better
results. However, as adapting these components is currently ongoing or recently
finished, there are no complex testing results to be published yet. There are
also new components; for example, the component focused on detection of
non-grammatical constructions such as attraction or blending errors.

5 Conclusion

This paper follows the current status of the proofreading tool developed at
Masaryk University as well as the overall progress made during the recent
year following the previous description of the project in Towards the New Czech
Grammar-checker. Multiple issues, such as independence on the specific text
processor, were resolved already with other planned to be resolved in the
proximate future. Although the development brings many obstacles, overcoming
them is necessary to bring the project to the successful end.



Recent Advancements of the New Online Proofreader of Czech 47

Acknowledgements This work was supported by the project of specific research
Čeština v jednotě synchronie a diachronie (Czech language in unity of synchrony
and diachrony; project no. MUNI/A/1061/2018) and by the Technology Agency
of the Czech Republic under the project TL02000146.

References

1. Kovář, V., Horák, A., Jakubíček, M.: Syntactic Analysis Using Finite Patterns: A New
Parsing System for Czech. In: Human Language Technology. Challenges for Computer
Science and Linguistics. pp. 161–171. Springer, Berlin/Heidelberg (2011)

2. Mrkývka, V.: Towards the New Czech Grammar-checker. In: Horák, A., Rychlý, P.,
Rambousek, A. (eds.) Proceedings of the Twelfth Workshop on Recent Advances in
Slavonic Natural Languages Processing, RASLAN 2018. pp. 3–8. Masaryk University,
Brno (2009)

3. Novotná, M., Masopustová, M.: Using Syntax Analyser SET as a Grammar Checker
for Czech. In: Horák, A., Rychlý, P., Rambousek, A. (eds.) Proceedings of the Twelfth
Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN
2018. pp. 9–14. Masaryk University, Brno (2009)

4. Petkevič, V.: Kontrola české gramatiky (český grammar checker). Studie z aplikované
lingvistiky-Studies in Applied Linguistics 5(2), 48–66 (2014)

5. Ramalho, L.: Fluent Python, p. 96. O’Reilly, Sebastopol (2015)
6. Straková, J., Straka, M., Hajič, J.: Open-Source Tools for Morphology, Lemmatization,

POS Tagging and Named Entity Recognition. In: Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations. pp. 13–
18. Association for Computational Linguistics, Baltimore, Maryland (June 2014),
http://www.aclweb.org/anthology/P/P14/P14-5003.pdf

7. Šmerk, P.: Towards morphological disambiguation of Czech. Ph.D. thesis, Masaryk
University, Brno (2007)

8. Šmerk, P.: Fast Morphological Analysis of Czech. In: Sojka, P., Horák, A. (eds.)
Proceedings of Third Workshop on Recent Advances in Slavonic Natural Language
Processing, RASLAN 2009. pp. 6–9. Masaryk University, Brno (2009)

http://www.aclweb.org/anthology/P/P14/P14-5003.pdf

