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Abstract. This work is part of a project aiming to provide one single
search endpoint for all company data. We present a search query parser
that takes a speech-to-text output, i.e. a sentence. The output is a structured
representation of the search query from which a SPARQL query is
generated. The SPARQL is then applied to an ontology with the company
data.
The parsing procedure consists of two steps. First, the search intent is
detected, second, the query is parsed based on the search intent. For the
intent classification, we use word embeddings with boosting of top 5
words, and support vector machines. For the parsing, we use semantic
role labeling, named entity recognition, and external resources such as
ConceptNet and DBPedia. The final parsing step is rule-based and related
to the ontology structure.
The intent classifier accuracy is 94%. In the subsequent manual evaluation,
the resulting structures were complete and correct in 51% cases, in 34.57%
of cases it was complete and correct but it also contained irrelevant
information.
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1 Introduction

Search in corporate data is one of the pain points for many people working
in the office. Apart from searching physical objects, they also look for digital
objects. This task is considered to be annoying and surprisingly difficult. In
our tool, we aggregate all possible data sources the company is working with,
such as company wiki, emails, task management tool, employee profiles, or
instant messages, so a powerful search engine is a must-have. The user interface
allows among other voice inputs. The voice signal is transcribed into text and the
system has to interpret this text into a search query. Such inputs are completely
different from the common search queries which are mostly keyword-based.

In case of search queries in natural language, we have to parse and interpret
a short text, consisting mostly of one or two sentences with many entities and
named entities. Often the sentence expresses relationships between the entities.
Sometimes, implicit knowledge has to be added to the interpretation.
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The system has three main components: one detects the main search intent
(e.g. a file or a person), the other parses the query into a structure from which
a SPARQL query is constructed. In the last component, the search results are
ranked and presented to the user from the highest rank.

1.1 Paper Outline

In Section 2, we describe in short the current aspects of search engines and
the current search query parser. Section 3 focuses on methods we have used,
particularly on . Section 4 discusses the evaluation criteria. Section 5 contains
final remarks.

2 Related Work

Search platforms are nothing new. Even in the open source world, one can find
search engines combining full text search with search query parsing, faceted
search (interactive filtering), synonym expansion, and other features. One such
platform is Open Semantic Search 3.

Most search engines are keyword-based fulltext (such as search in the Web)
or faceted-based (such as search in a library) or combination of both. In addition,
search engine can provide instant feedback or clarification dialogue, and thus,
in such cases it becomes something between a search engine and a question
answering system. The dialog-like search is also present in personal assistants
such as Siri, Cortana, Alexa, and other where the interface is spoken.

The presentation of search results is not a simple list of items anymore. Even
web search engines try to guess the user search intent and in some cases provide
the direct answer. For example, Google Search provides a calculation if the user
enters a mathematical formula, a conversion if the user enters query such as “15
EUR in CZK”, or a description if the user enters a named entity (e.g. for “Marylin
Monroe” it returns “a film actress”). Many aspects of search query presentation
are described in [4].

In the current version of our project, the search engine provides faceted search
as shown in Figure 1 and sentence query search intended to work together with
voice input. Users can also write search sentences into the search input box but
in reality, nobody expects them to do so. For parsing the search sentence, we
use Google DialogFlow 4 with predefined dialog intents. The output of sentence
parsing by DialogFlow is a structured object such as a Python dict, example of
such output can be seen in Figure 2.

The granularity of intents is quite high, e.g. searching documents shared
with someone is different intent than searching documents from a meeting.
DialogFlow is provided by 10–30 example queries and creates a generalization
for this particular intent.

3 http://opensemanticsearch.org
4 http://dialogflow.com
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Fig. 1: Search input box and faceted search presented in the frontend

{
...
"parameters": {
"openingPhrase": "find",
"givenName": "Bob",
"lastName": "",
"document": {

"type": "presentation",
"topic": "artificial intelligence"

},
...
"score": 0.9966866513437793

}

Fig. 2: Sample output for input “Find the presentation about artificial intelligence
that Bob sent to me”.
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It seems that DialogFlow extensibility is limited: every time a new intent is
added to the current ones, the confidence numbers for all intents decrease.

The aim of this work is to provide a search query parser with at least the
same accuracy as DialogFlow on transcribed sentences and higher extensibility.

3 Methods

The design of the search query parser consists of two basic modules: intent
classifier and search query parser adapted to a particular intent. For example,
the prepositional phrase beginning with “in” means usually a location. In case
of digital objects, this location is digital as well (for example, “in office” means
“in the Office application”), while in case of physical objects, the location is also
physical (for example, “in office” means “in somebody’s office”).

3.1 Intent Classifier

Problem definition According to an internal survey, people working in office
most frequently look for text documents (21% cases), persons (10% cases),
multimedia files (7.8% cases), personal belongings, emails (6.4% cases), web
pages, locations, tasks, presentations and others with lower frequency. Based on
this survey, we identified six classes of search intents, described in Section 4.

Proposed model To classify intents, all tokens of the query are lower-cased
and stop-words are removed. Tokens are mapped to 300-dimensional word
embeddings using publicly available vocabulary of FastText [2] vectors trained
on CommonCrawl dataset. Missing words are ignored. Vectors are then
aggregated by averaging in two ways:

1. Average of vectors of first k words of the query
2. Average vectors of all words of the query

Both vectors are then concatenated into single 600-dimensional representation
for each sample. Motivation for this double representation is our observation
that natural language search query often contains most informational words for
intent classification at the beginning of the query sentence (e.g. word “document”
in “look for a document which contains image of elephant”). By averaging words
from beginning of the sentence, we encode information about beginning of the
search phrase and let the classifier exploit this positional-specific information.
This simple approach enables the classifier to focus on specific parts of the query.
The trade-off is the increase in feature vector dimension.

We used SVM [1] classifier with RBF kernel that is also able to evaluate
confidence of the prediction.
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3.2 Search Query Parser

We assume the search query is composed of one or a few sentences. First, we
apply semantic role labeling to each sentence, then we apply rules to parse each
of the arguments. The rules depend on the search intent.

Semantic Role Labeling Semantic role labeling (SRL) decomposes each clause
of a sentence to predicate-argument structure. Historically, SRL used syntactic
parsing, however, the Deep SRL [3] which is based on neural networks
outperforms the previous approaches.

We use Deep SRL as a server that for a given sentence outputs separate
clauses. For each clause, it outputs the predicate and its arguments. The
arguments are the same as in PropBank5: numbered arguments ARG0–ARG5,
and predicate and phrasal modifiers (e.g ARGM-LOC for locations or ARGM-TMP for
temporals). We do not consider PropBank links.

Rule-based Argument Parsing Each numbered argument is rule-based parsed.
In future, we consider to induce the rules from the ontology scheme but in the
current version, the connection with ontology is very limited. We treat predicate
and phrasal modifiers, and numbered arguments in different ways.

Predicate and phrasal modifiers For arguments of type ARGM-LOC or ARGM-TMP, the
parsing is straightforward: we consider the whole content of the argument as
one unit of the same type as the argument (e.g. location or time).

Argument containing the main intent We parse the argument that contains the
main intent in a different than the other numbered arguments. The main intent
is always the syntactic head of the argument (if is not, the parsing cannot
continue). All dependent components are modifiers of the intent. For example,
if the argument contains “pdf file”, the main intent is “file” and “pdf” is a
constraint to file format.

Arguments not containing the main intent Other numbered arguments are
processed together with the predicate since the predicates describe relations
(e.g. contain, create, share, . . . ) between the main intent and other entities. If the
extracted entities are recognized as potential objects in the graph database (such
as users), they have to have a relationship to the main intent or other objects. In
other cases, the entities are identified as keywords. We use SpaCy6 with large
English model for tagging and recognizing named entities.

The overall result of the parsing is a structure. An example can be seen
in Figure 3. In the output structure, we consider only autosemantic tokens,
however, other part of speech can modify the relation. For example, if the query
contains a named entity “Bob”, it can be interpreted as the owner or creator

5 https://propbank.github.io/
6 https://spacy.io
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{
...
"tokens": [

{"text": "document",
"relation": {"value": "intent", "confidence": 0.5},
"label": {"value": "presentation", "confidence": 1.0}

},
{"synonym": [

{"value": "AI", "confidence": 0.5},
{"value": "ai", "confidence": 0.5}

],
"informationSource": "conceptnet",
"text": "artificial intelligence",
"relation": {"value": "keyword", "confidence": 0.5}

},
{"text": "Jane Smart",
"entity": {"value": "PERSON", "confidence": 0.5},
"relation": {"value": "sharedWithPERSON", "confidence": 0.5}

}
]

}

Fig. 3: Sample output for input “Find the document about artificial intelligence
that Jane Smart provided to me.”.

of a document (e.g. “find documents by Bob”) but it can be also interpreted
as a keyword in the document (e.g. “find documents about Bob”). Multiword
expressions are identified and treated as a single token. Foreach token, the
relation is determined. The token text and token relations are necessary, since the
resulting structure is later converted into a SPARQL query in the form of triples
(mainintent, relation, label).

We process multiword expressions, using syntactic constraints (NOUN-
NOUN, ADJ-NOUN, PROPN-PROPN) and external resources. Particularly,
we use ConceptNet7 and DBPedia8 to confirm that a multiword expression
candidate is a single meaning unit. In most cases, the greedy approach
(preferring “team building” over “team” and “building” which all three exist in
external resources) is the best. In addition, ConceptNet provides synonyms that
can later be used to expand the SPARQL query.

4 Evaluation

We evaluated the two parts of the system separately.

7 http://conceptnet.io/
8 https://wiki.dbpedia.org/lookup

http://conceptnet.io/
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4.1 Query intent classification

For evaluation we used internally created data-set of 441 query examples from 6
categories:

– Calendar event (cal)
– Message (msg) – email or instant message
– Multimedia content (mul) – image, video, or audio files
– Personal information (per)
– Task (tsk) – task description optionally with an assignee and a due date
– Text document/spreadsheet (txt)

The data were split 50/50 into category-balanced sets of 220 examples for
training and 221 examples for testing due to small available sample size. We
evaluated proposed query intent classifier with double representation and ad-
hoc selected k = 5 against a baseline model, which was the same model without
additional average vector for 5 first tokens.

Table 1: Test set performance model with single (word vector average, dim=300)
and double (word vector average + first 5 words vector verage,dim=600)
representation.

single representation double representation
Category Precision Recall F-1 Support Precision Recall F-1 Support
cal 0.94 0.83 0.88 36 1.00 0.94 0.97 36
msg 0.80 0.75 0.77 32 0.90 0.84 0.87 32
mul 0.80 0.62 0.70 26 1.00 0.96 0.98 26
per 0.93 0.88 0.90 48 0.94 0.96 0.95 48
tsk 1.00 0.90 0.95 10 1.00 1.00 1.00 10
txt 0.74 0.91 0.82 69 0.90 0.96 0.93 69
micro avg 0.83 0.83 0.83 221 0.94 0.94 0.94 221
macro avg 0.87 0.81 0.84 221 0.96 0.94 0.95 221
weighted avg 0.84 0.83 0.83 221 0.94 0.94 0.94 221

In the test set classification performance results (Table 1), we show that the
model with double representation achieves high average precision and recall
(≥ 0.94) on the test set. We have also shown that adding average vector of first 5
tokens to all word vector average improved the results by at least 10% compared
to baseline. The confusion matrices are presented in Figure 4.

4.2 Evaluation of the Search Query Parser

A crucial question for evaluation is whether the parsed structure can be
transformed to a SPARQL query that returns correct results. We realized that
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Fig. 4: Test set confusion matrix for model without double representation: word
vector average + first 5 words vector average, dim=600 (left) and word vector
average, dim=300 (right)

some ambiguity is present even in search queries, e.g. a presentation can be a
video, an event, or a PDF/PPTX file. We therefore considered the parsing to
be correct if it returned one meaningful interpretation of the sentence. We also
wanted that all relevant parts of the sentence were considered in the parsed
structure. The relevance was judged using a common sense interpretation of the
sentence.

We evaluated manually the parsing on 80 example search sentences. 41
sentences were parsed completely and correctly. In 11 sentences, a relevant
token was not recognized. In 3 cases out of these 11, it was a related person,
in the remaining cases, it was a keyword. In 28 cases, an irrelevant token was
extracted and included in the output structure. This was a case in sentences
such as “find an AI expert in the London office” where the word “office” is not
relevant for the search. In 6 cases, the relation was detected incorrectly.

5 Conclusion and Future Work

We proposed a natural language search query intent classification model with
double representation allowing classifier to focus on specific part of the query
and we have shown that this representation can significantly increase the
classifier performance in experimental setting.

The sentence parser benefits from the intent classification, and uses semantic
role labeling. Parsing of each argument is rule based. Even though we evaluated
the parser on a limited number of sentences, we can see that its recall is plausible.

Possible improvements of the query intent classification model include using
shorter word embeddings and more granular split of queries to include more
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position-specific information into the feature vector and usage of domain-specific
word embeddings additionally to embeddings model trained on public data-set.

We also plan to tie the parser more closely to the ontology scheme. The ideal
situation would be a parser that can adapt on the ontology scheme modifications.
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