Towards the New Czech Grammar-checker

Vojtéch Mrkyvka

Faculty of Arts, Masaryk University
Arne Novéka 1, 602 00 Brno, Czech Republic

mrkyvka@phil.muni.cz

Abstract. I created a basis for the new grammar-checker of Czech. This
was positively accepted by the committee and I was allowed to continue
its development in my further study. In this paper, I want to describe the
proximate issues of its active development.

Keywords: spell checker; grammar checker; text analysis; correction

1 Introduction

In September 2018 I've published the first version of the new grammar-checker
of Czech (see Figure[). I was motivated by the fact that the presumably best
current option is part of the proprietary software. Additionally, it doesn’t
provide satisfactory results. Limitations of it can be discovered by comparing
functionality described in the article Kontrola ceské gramatiky (Cesky grammar
checker) by Vladimir Petkevi¢ and the status quo provided by the most recent
versions of the same software, where some of the described features are no
longer available. [1]

! ! PLINKorektor Uvod

Rozhrani korektoru

Prisel jsem k golemovi. On se na mé otodil kdyz jsem se nedival.

P » SPAN

Fig. 1: Current version of the new grammar-checker. The red underlines depict
errors.

Ales Horak, Pavel Rychly, |Adam Rambousek| (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2018, pp. 3—@ 2018. © Tribun EU 2018

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://www.muni.cz/people/60380
http://raslan2018.nlp-consulting.net/

4 V. Mrkyvka

2 The Current Version

2.1 The Corrector Interface

For the corrector to be truly open to use, I developed an online application using
widely spread text processor TinyMCE v4 and provided different correction
mechanisms as separate modules. [2] Due to its JavaScript nature, I decided to
make it asynchronous as faster modules wouldn’t need to wait for the slower
ones. Obviously, in some cases, there were necessary dependencies. It was
likely that tasks such as tokenisation or lemmatisation would be required by
multiple correction modules, so it was more than convenient to perform these
tasks separately (see Figure[2). The approach could be seen on the final render,
where corrections made by faster modules are also displayed sooner in the text
processor window. To push the speed even further, I separated the processing to
individual paragraphs, where the process of grammar-checking is repeated only
on one(s), which were modified.

some
module

_

correction
displaying

lemmatization \
& tagging

tokenization

some
module

s

some
module

s

ig. 2: Visualisation of the new corrector’s asynchronous nature.
Fig.2: Vi lisat f th tor’ h t

2.2 Implemented modules

Although the current version does not achieve qualities of its competitor, as
a relatively open software it does have a potential to do so by including a
multitude of correctly working submodules. At the time of writing this article,
there were six focused on four different types of mistakes — spelling, syntactic,
morphological and typographical errors. These modules stood fairly well in
testing, where I've provided text with artificial mistakes (see table|I} for further
information see the thesis [3]]). The modules vary in success, but that is mainly
because the less successful modules deal with more complex issues.

Towards the New Czech Grammar-checker 5

Table 1: Number of true and false positive/negative values (TP /FP/TN/EN) for
the individual modules and corresponding precision (pre) and recall (rec) rates.

lCorrection HTP\FP\TN\FN\ pre \ rec ‘
Misspellings (excl. proper nouns) 24| 0 |487|16|1,000/0,600
Misspellings (incl. proper nouns) 7 (171497 6 |0,292/0,538
Vocalisation of prepositions 4 10| 8| 0 (1,000{1,000
Multiple whitespaces 410|515/ 0 |1,000{1,000
Whitespace in the interpunction proximity|| 7 | 0 {119| 0 |1,000|1,000
Conditionals 210|110 (1,000{1,000
Commas in a sentence 310 0| 4 (1,000|0,429

3 The proximate issues

As I suggested before, the corrector is far from being perfect. There are many
issues, which have different difficulty as well as different priority. In the long
run, the development will consist of adding new modules, which will improve
corrector as a whole. In the short run, there are tasks, which should improve
further development and user acceptance alike.

3.1 Genuine testing

The quality evaluation of modules’ success is crucial part of the development.
The approach I used, however, is far from ideal. The problem is twofold. The text
I'used was artificial, eg. it didn’t reflect real distribution of users’ mistakes, and
its length was insufficient. Because of this, the results could be hardly accepted as
generally valid. The solution lies in the existence of a collection of genuine texts
with correctly labelled errors. On Masaryk University corpus Chyby was created,
containing various annotated types of errors in texts made by students. [4]
Unfortunately, access to this corpus is limited, so I cannot assess its suitability
and I did not find any other evidence of the Czech corpus of such quality.

Additionally, the current version of the corrector lacks any kind of interface,
which would allow evaluating results automatically. This is necessary as the
manual inspection would cost excessive amount of time, which could be used
for the further development.

3.2 Error reporting

Next issue covers incorrectly found (non-)errors and users’ feedback. Though it
isn’t implemented in the current version, the reporting itself should be relatively
easy. The problem unfolds with keeping these cases hidden even after the minor
change of text. Although the current approach is based on tokens, it is not
bound to token’s content, as there could be a mismatch, but to its position (token

6 V. Mrkyvka

number, see Fig.[3). One option is to extend the binding to different criteria, but
due to the various nature of different modules, there would be problem to find
any general approach and this issue will have to be addressed by the different
correction modules separately. In some cases, I believe the solution will be fairly
easy, such as building ignore list for the spell-checker, but for other, it could
provide a significant challenge.

0O 1 2 345 6 7

The| |[dog| [is| [runing

Tokens to display mistake at: 6
Correction: 6/runing/running

Fig. 3: Example of correction, word runing would be highlighted and user would
be suggested with the correct form.

3.3 Spell-checking

Spell-checking is a distinct chapter of the corrector and such as it has specific
issues. They are often described as non-word error detection, isolated-word error
correction, and context-dependent error correction. [5] The context-dependent error
correction is an advanced task, so in this phase of development, I do not plan to
focus on it. The other two, however, are very important as they would be among
the first things required by the end users. The non-word error detection aims
solely on distinguishing words from non-words. Its precision is closely linked
to the quality and size of the lexicon used. Although morphological analyser
Majka, whose lexicon is used in the current version of the grammar-checker,
provides a fairly big number of word forms, there are contained substandard
word forms beside the standard ones. If it would be used in the future, there
is the necessity of filtering these forms. Additionally, even though Majka as an
analyser, unlike its predecessor, is not dependent on its lexicon, the standard
lexicon is not often updated. [6] This raises the question of whether to use it in
the future or if would be better to switch to different, expandable resource such
as hunspell. [7] Either way, there should be created service (if it doesn’t already
exist with given system), such as a programme or internet application, which
would allow the moderator to easily add new words, as they can come in large
numbers, which should be then automatically included in the right format.

The related issue is an isolated-word correction. This topic covers automatic
corrections as well as suggestions. Unlike the competition, this is not yet covered
by the corrector in any way. Some tools, such as previously mentioned hunspell,
have their own methods implemented. Possible custom implementation could
use algorithms based on Damerau-Levenshtein distance measures or other noisy
channel approaches such as Brill and Moore’s model. [8]

Towards the New Czech Grammar-checker 7
4 Conclusion

This paper summarises the development history of the new Czech grammar-
checker and uncovers the proximate issues in future development. These issues
aren’t the only ones to be solved before the corrector could be considered as
satisfactory. The success of the final product rests on the success rate of the added
modules. There are multiple works on partial topics, which are in some stage
of development or relatively freshly finished. This can provide me with quality
resources for future module development. Apart from correction itself, the
interface has to provide a sufficient range of metatext options, such as headers,
bold and italic text, cut and others for users to start using it on daily basis. This
is already implemented in the TinyMCE editor, but momentarily disabled.

Jow and create unikersal tool such as Grammarly.

a universal

Fig.4: Correction information in Grammarly.

Although one of the steps is to enable users these options in the editor’s
window, the ultimate goal is to make the corrector independent. The model
for this can be seen in the American Grammarly [9], which provides grammar
checking of English text on the internet (see Figure[). As it provides quality and
understandable results for its language domain I hope I will be able to get at
least close to its successes from the Czech language point of view.

Acknowledgements. This work was supported by the project of specific
research Cestina v jednoté synchronie a diachronie (Czech language in unity of
synchrony and diachrony; project no. MUNI/A /0862/2017).

References

1. Petkevig, V.: Kontrola ¢eské gramatiky (¢esky grammar checker). Studie z aplikované
lingvistiky-Studies in Applied Linguistics [online] 5(2) (2014 [2018-10-31]) 48-66

2. TinyMCE: Create a plugin for tinymce [online] (2018 [2018-10-31])

3. Mrkyvka, V.: Webové rozhrani pro automaticky jazykovy korektor ¢estiny [online].
Diplomova prace, Masarykova univerzita, Filozoficka fakulta, Brno (2018 [2018-10-31])

V. Mrkyvka

. Pala, K., Rychly, P, Smrz, P.: Text corpus with errors. In Matousek, V., Mautner, P, eds.:
Text, Speech and Dialogue [online], Berlin, Heidelberg, Springer Berlin Heidelberg
(2003 [2018-10-30]) 90-97

. Kukich, K.: Techniques for automatically correcting words in text. ACM Comput.
Surv. [online] 24(4) (December 1992 [2018-10-31]) 377—439

. Smerk, P, Rychly, P.: Majka — rychly morfologicky analyzator [online]. Technical
report, Masarykova univerzita (2009 [2018-10-31])

. Németh, L.: Hunspell: About [online] (2003 [2018-10-31])

. Brill, E., Moore, R.C.: An improved error model for noisy channel spelling correction.
In: Proceedings of the 38th Annual Meeting on Association for Computational
Linguistics [online]. ACL '00, Stroudsburg, PA, USA, Association for Computational
Linguistics (2000 [2018-10-31]) 286-293

. Grammarly: About | grammarly [online] (2018 [2018-10-31])

