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Abstract. The paper describes a new Part of speech (PoS) tagger which
can learn a PoS tagging language model from very short annotated text
with the use of much bigger non-annotated text. Only several sentences
could be used for training to achieve much better accuracy than a baseline.
The results cannot be compared to the results of state-of-the-art taggers
but it could be used during the annotation process for a pre-annotation.
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1 Introduction

Part of speech (PoS) tagging is one of the most important tasks in corpus
linguistics. PoS taggers assign a PoS tag for each word from an input. They
usually learn a language model (or a set of rules) using manually annotated
texts. Some taggers could also exploit an optional lexicon to help annotation of
words which are not found in the manually annotated text.

One of the main feature of a text corpus in the field of natural language
processing is its big size. Text corpora contains from millions to billions tokens.
It is not a problem to create a corpus with tens of million tokens even for
small languages [1]. On the other hand, manual annotation of such corpora
is a big problem, it is a time consuming and expensive process. As a result,
manually annotated corpora are rather small, most of them have less than one
million tokens. For example, there are only five larger corpora in the Universal
Dependencies1 – the most comprehensive database of annotated corpora. Many
smaller corpora have only a few hundred sentences annotated.

It is very hard to learn anything automatically from such small corpora
because they contain only a few thousands of different words and most words
have only one hit in the whole corpus. The performance (accuracy) of a PoS
tagger trained on such corpus is close to the baseline. A bit better performance is
achieved by taggers which use a lexicon or a morphological database containing
all possible PoS tags for large amount of words. That could be helpful for
languages where such lexicon or database is available. Otherwise, construction
of them is more expensive than PoS annotation of a small corpus.

1 http://universaldependencies.org/
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2 KernelTagger

KernelTagger is a new PoS tagger. It is optimize to exploit as much knowledge
as possible from a large non-annotated corpus with the help of possibly very
small PoS annotated corpus.

The main idea behind KernelTagger is computation of word similarity from
the non-annotated corpus and using the kernel trick to derive a PoS tag for a
given word from similarity to words with tag known from the small annotated
corpus. There is no learning of any features from the annotated corpus, the
tagger remembers PoS tags for each word from the annotated corpus. If the
given word occurred in the training corpus the tagger outputs the most probable
(most frequent) PoS tag for such word. The tag for unseen words is computed
using a modification of a kernel perceptron on known words. The modification
consists of using only top 5 most similar known words instead of all known
words.

We use this modification because similarity of most (almost all) word pairs is
near zero (they are not similar) and the exact number is mostly a noise. On the
other hand, the similarity of similar words is quite reliable and could be used
for computation.

2.1 Word Similarity Computation

In the early stages of development, we have used several different settings of a
word embedding system [2] but the final version use very simple distributional
similarity computed from small contexts. We use only one preceding and one
following word for each keyword, we compute the logDice [3] salience score
and assign the similarity of two words wa and wb using the following formula:

sim(wa, wb) =
∑c min(D(wa, c), D(wb, c))
∑c D(wa, c) + ∑c D(wb, c)

where D(wa, c) is the logDice score of word wa and context c. We use only
contexts with positive logDice. The left and right contexts are handled separately:
the same word before and after a keyword are treated as two different contexts.

2.2 PoS of Unseen Words

The PoS tag for a word which occurs in the training annotated corpus is the most
frequent tag for that word (one is chosen randomly for several tags with same
frequency).

The PoS tag for an unseen word is computed from PoS tags of most similar
known words. First, we set a list of up to 5 most similar words. Then the tag for
a word w is defined by the following formula:

argmaxt ∑
x

sim(w, x)P(x, t)

where P(x, t) is the probability of the tag t for the word w.
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3 Evaluation

We have evaluated the tagger on the DESAM corpus [4], the Czech corpus
of about one million manually annotated tokens. It contains lemma and
morphological tag for each word. As Czech has quite complex morphology
the DESAM tag-set is huge, it consists of 13 attributes with up to 7 different
values. We have used only the main part of speech, that means only 12 different
values, 11 for words (including one for numbers) and one for punctuation. The
most frequent PoS tag is NOUN, it represents 30% of tokens.

We have used two setups for a non-annotated corpus:

1. The whole DESAM corpus. We choose this setup to demonstrate that even
small (1 mil.) corpus could be useful for computing word similarities.

2. Part of czTenTen[1] corpus. Only a small part of the whole corpus was used
to simulate low resource language. The used part contains 33 million tokens.
There was a limit of 10 million word pairs during word similarity compu-
tation. That means only 10 million most similar word pairs are stored and
used for evaluation. This limit caused that the size of the temporary data
files was less than a half of the size from the DESAM setup.

The results are listed in Table 1. There are four test cases for each setup. They
differ in the number of annotated tokens used for training (the first column).
We can see that even 1000 tokens (representing several dozens of sentences)
provides interesting accuracy.

4 Future Work

We would like to make more evaluation on the Czech corpus to measure the
influence of the size of the non-annotated corpus. There are also questions on
influence of several KernelTagger parameters which we have set according to
just a few tests:

1. N for the top N most similar words (now: 5),
2. the size of context in computing similarity of words (now: 1),
3. the threshold of minimal logDice and minimal count of a context to be

included in similarity (now: 0 and 2).

Table 1. Evaluation results: The accuracy of KernelTagger for different number
of training tokens with annotation and different corpora for computing word
similarities.

train tokens DESAM (1 mil.) czTenTen (33 mil.)
1,000 70.7 72.9

10,000 78.8 81.7
100,000 87.7 88.5
980,000 92.9 92.8
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We are also going to add two modules to handle the most common errors in
the KernelTagger annotation. First one for handling unknown words according
to sub-strings. Second one for handling ambiguous words depending on context.
That could increase the usability of KernelTagger for languages with weak
morphology and high ambiguity of PoS tags for individual word forms.

5 Conclusion

In this paper, we have presented the new PoS tagger KernelTagger. It trains a
PoS model from (small) annotated text and (big) non-annotated text. The main
advantage of the tagger is its ability to provide competitive results for very
small annotated texts, as small as several sentences. The tagger could be used
especially for low-resource languages and for pre-annotation during manual
annotation of texts. It works well for morphologically rich languages.
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