
Wikilink – Wikipedia Link Suggestion System,
Its Problems and Possible Solutions

Vojtěch Mrkývka

Faculty of Arts, Masaryk University
Arne Nováka 1, 602 00 Brno, Czech Republic

421310@mail.muni.cz

Abstract. In my bachelor thesis I have created a tool, which was able to
analyse paragraphs from the given Wikipedia article and suggested the
editors internal links, that they could add into this article.
In this paper I return to my thesis and to the tool and evaluate its
procedures. I offer ways to solve the problems associated with it, ways
which would lead to overall improvement and acceleration of the tool.

Key words: lemmatization, Wikipedia, text mining

1 Introduction

Wikipedia is without doubts the largest encyclopedia in the world [1]. The
difference between Wikipedia and its competitors is the flexibility or in the other
words possibility to quickly react to current events and discoveries.

Wikipedia is an encyclopedia where anyone can add some information or
edit the existing one. But in practice only a tiny percent of the users actively
creates new content. Nevertheless there are active efforts to increase the number
of editors with regards to conservation of the same or better quality of the
content. When I was creating my tool I tried to follow the same principle. I
hoped that it would ease the users’ editing work and therefore it would increase
quality of the target contribution.

2 About Wikipedia

Wikipedia is a free internet encyclopedia, which allow its users to read its content
and participate on its development without need to pay any subscription fee or
for any licence [2].

It was launched on 15 January 2001 by its founders Jimmy Wales and Larry
Singer. Although Wikipedia was meant only as a side-project to encyclopedia
Nupedia, which included only articles verified by renowned experts (Wikipedia
should have acted like a source of topics and drafts for new articles), its
popularity raised rapidly. Today Wikipedia contains more than 5.5 million
of articles in its English mutation only. Although the number of visitors is
astonishing, the problem is only a small percent of registered users is also
helping as editors (by the recent data only about 0.4% edited at least once during
the last month) [3].

Aleš Horák, Pavel Rychlý, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2017, pp. 21–26, 2017. © Tribun EU 2017

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://www.muni.cz/people/60380
http://raslan2017.nlp-consulting.net/


22 V. Mrkývka

3 Editing Wikipedia

One of the problems associated with the number of editors was the way of
editing. Until 2013 the only possibility to create or change any article was to
use wikitext, special markup language used for saving Wikipedia articles. This
was inconvenient for less technically competent users. Because of it there was a
great unbalance between different fields of study. To attract new editors is what
Wikipedia Usability Initiative took as its aim. In its five-year-plan for years 2010–
2015 proposed creation of new rich-text editor, which would, according to their
idea, help to increase the number of Wikipedia contributors to 200,000 (from
original number of about 80,000) [4]. In 2012 new editor called VisualEditor was
presented in the Wikimedia project. One year later the gradual inclusion of this
tool into different language mutations of Wikipedia started [5].

4 Linking Wikipedia

Because of the format of Wikipedia, the internet site, the individual links between
Wikipedia articles are made as hypertext links. All of the Wikipedia’s links can
be separated into three groups. Internal links are those, which are linking pages
within Wikipedia or its sister projects (Wiktionary, Wikidata, Wikibooks and
others) [6], external links are targeting some external page [7]. Internal links can
be further divided to truly-internal, which keeps link within single project and
its single language mutation (for example English Wikipedia), and semi-internal,
which do not meet the previous criteria.

Insertion of internal and external links is driven by different rules. External
links usually connect the article with the source of extended information about
the topic. For this reason they are usually situated in reference part of the article
and not in the article’s body [7]. The internal links on the other hand can help
reader to understand the unknown parts of the text by exploring the related
topics. They fulfil the role of classic see something, which is often present in
paper encyclopedias [6]. Even their way of writing is different when the wikitext
editation is used.

To keep the article readable, there is a rule on Wikipedia which states that
only the first occurrence of some topic in the article’s text (information boxes
and similar do not count) should be linked also only the articles where is
probability to help user with extending knowledge of this articles topic or can
bring extending information about it should be linked [6].

5 Wikilink – the Link Suggestion Tool

In my bachelor thesis I designed and created a system, which suggested non-
present truly-internal links to the editor of the article. In the beginning I wanted
to create an automatic tool (bot), which would insert the links independent on
any user. The problem was, create a tool, which would be precise enough to
insert only correct links (within some small tolerance), would be task, which



Wikilink – Wikipedia Link Suggestion System 23

was at the time far superior to my knowledge. Because of this I created the tool,
which only suggested possible links to the user and let him to make the final
decision.

Wikilink, as I named the tool, consisted of two parts – the client part
and the server part. The client part was written in Javascript with jQuery. In
the beginning the purpose of the client part was to send data to the server
(processing) part and display the results back on the Wikipedia website. Due to
the same-origin policy, which prevents AJAX response from another domain,
the final version of the client part only send data without receiving any [8]. I
used VisualEditor as the source of the data due to the assumption that new
users would use it rather than wikitext editing. I avoided editing the result after
saving because it would create more unnecessary versions of the article.

Data gained from the client part were processed by the server part. The
server part, written in Python1, removed undesirable elements like information
boxes or references. The following processes split individual paragraphs into
tokens, lemmatized them and searched for potential links in the reference file.

The reference file was made from Wikipedia backup database dump [9], more
specifically from the list of all pages in the main namespace2 which is generated
multiple times every month. This file had to be lemmatized and sorted by lemma
for faster functioning.

Output of the tool consisted of the text of every paragraph followed by the
table. This table consisted of alphabetically sorted pairs of the link text and the
article name to which it should be connected. Because of the first occurrence rule
I removed those lines, where the suggestion was done in any of the previous
paragraphs.

6 Shortcomings of the First Version

Although the Wikilink was principally working, meaning it suggested new links,
which were not present in the article, it contained number of shortcomings,
which limited its release and possible wide spreading.

First problem was solely based on user-friendliness. When I was writing my
bachelor thesis I wasn’t able to integrate the button, which started the whole
analysis, into the VisualEditor interface. More specifically I wasn’t able to force
any Javascript code to start only after the VisualEditor was loaded. Due to this
the button to start the Wikilink’s process had to be situated outside the editor
interface. Because VisualEditor is sometimes loaded without page reload (for
example from article itself), the button had to be displayed also on these pages.
In this case, the button only displayed special alert message.

Other shortcomings occured in the server part during analysis. Analytic
process took lemmatized tokens as an input and tried to find them in the
reference list. Output contained two lists, where lemmatized token:

1 version 2.6
2 The main namespace contains articles, other namespaces contain portals, help pages,

categories and others [10].



24 V. Mrkývka

– Fully corresponded to lemmatized article name in the reference list (full
match)

– Partially corresponded to lemmatized article match in the reference list
(partial match)

Union of these lists was the input for the second run of the analytic process.
In the second run, the bi-grams were analysed and so on. When the run returned
empty result in both of the lists, the cycle of analytic processing stopped. Because
of size of the reference list, even the bisection search3 returned results very slowly
(see Table 1). Furthermore I kept links from full match list even if there was
found longer string on the same place. I believed, that there are cases, where the
link on shorter term can be in the context more specific than on the longer term.
In practice, however, I wasn’t able to prove this claim, so I think that if there is
special case where this concept is right, it occurs so rarely, that there is no need
to take it into account.

The last shortcoming was the output format. As I stated before, initially
I wanted to display the results back on Wikipedia, ideally right inside the
editing window, but due to the same-origin policy, which I wasn’t able to
overcome at the time, I created special output page where the analysis results
were displayed. Thinking of clarity improvement, I ordered the list of results
under every paragraph alphabetically, but due to high number of the false
results, the solution was far from perfect.

7 Possible Solutions

Shortcomings presented in the previous chapter can be sorted into three
overlapping categories – accuracy, overall speed and user-friendliness.

From the perspective of accuracy it is necessary to filter links to the articles
which are invalid (or common) by its nature. Example of the very common
suggestion can be article Comma, to which redirects article name ,. It is very
unlikely that any of the Wikipedia articles wouldn’t have any punctuation.

3 using bisect package [11]

Table 1. Statistical representation of Wikilink results on random articles. Relevant
links column is purely opinion-based, but it can outline the precision of the tool
(however links already present in the article are skipped, so the true number
would be probably higher).

Article Word count Avg. run time Suggested Relevant
Bergelmir 89 words 5.45 s 34 links 2 links
Pavel Suchý 420 words 10.44 s 95 links 11 links
SARS 749 words 19.53 s 183 links 59 links
Spolek přátel Rumburku 1,171 words 47.09 s 319 links 34 links
Brno 13,842 words 393.00 s 1,978 links 329 links



Wikilink – Wikipedia Link Suggestion System 25

Concurrently can be assumed, that only a small number of articles should
truly link to the Comma. These cases could be removed by application of the
simple stop-list, or regular expression. The more complicated are cases where
the lemmatization fails and for the specific string is suggested for example some
abbreviation. Stop-list could be used to remove the most common mistakes, but
not all of them. Because the most of these mistakes link to particular parts of
speech and common words the filter could follow them. More specifically the
system should filter links made only by preposition, conjunction or one of the
verbs to be or to have.

Considering my previous statement, that shorter strings are usually worse
than longer on the same place, the analytic phase of the application can be
changed from the multiple runs to the single one. This could improve not only
accuracy, but also the overall speed, the second condition for better usability.
Speed can be further improved by focusing more on preprocessing of the
reference list, which would lower the user requirements. For example the
reference list can be rebuild into form of the tree, which can be saved in the
JSON format. Crawling the tree would find longer links significantly faster than
using the old method.

As for user-friendliness, the previous form of the input and the output was
influenced by two mentioned problems – VisualEditor implementation and
especially the same-origin policy, which made AJAX requests across different
domains impossible. Since my bachelor thesis I found the ways, how to overcome
both of these inconveniences. On the website of MediaWiki, whose editing team
created the VisualEditor, could be found parts of code and tutorials to operate
with editor’s interface [12]. The same-origin policy could be evaded by the HTTP
header Access-Control-Allow-Origin [13]. The results then could be displayed
straight inside the VisualEditor interface.

8 Conclusion

Wikilink as a tool did in principle what it was designed for. Although it was
far from practical tool due to its speed and accuracy, it outlined some trends
which can be followed in further development. In this article I tried to present
the problems of the tool with possible solutions, but they are only some of the
improvements by which can be the tool enhanced. There are other possibilities
which can be explored, for example separate AJAX request, which would suggest
possible links continuously. But the aspects of further improvements must be
evaluated before any judgements.

Acknowledgments. This work was supported by the project of specific research
Čeština v jednotě synchronie a diachronie (Czech language in unity of synchrony
and diachrony; project no. MUNI/A/0915/2016).



26 V. Mrkývka

References

1. Wikipedia: Wikipedia:size comparisons — wikipedia, the free encyclopedia (2017)
[Online; accessed 29-October-2017].

2. Wikipedia: Wikipedia:about — wikipedia, the free encyclopedia (2017) [Online;
accessed 29-October-2017].

3. Wikipedia: Special:statistics — wikipedia, the free encyclopedia (2017) [Online;
accessed 29-October-2017].

4. Strategic Planning: Product whitepaper — strategic planning, (2011) [Online; accessed
29-October-2017].

5. MediaWiki: Visualeditor — mediawiki, the free wiki engine (2017) [Online; accessed
29-October-2017].

6. Wikipedia: Wikipedia:manual of style/linking — wikipedia, the free encyclopedia
(2017) [Online; accessed 27-October-2017].

7. Wikipedia: Wikipedia:external links — wikipedia, the free encyclopedia (2017)
[Online; accessed 27-October-2017].

8. Mozilla Foundation: Same-origin policy - web security | mdn (2017) [Online; accessed
20-October-2017].

9. Wikimedia Foundation: Wikimedia downloads (2017) [Online; accessed 20-October-
2017].

10. Wikipedia: Wikipedia:namespace — wikipedia, the free encyclopedia (2017) [Online;
accessed 20-October-2017].

11. Python Software Foundation: 8.5. bisect — array bisection algorithm — python 2.7.14
documentation (2017) [Online; accessed 20-October-2017].

12. MediaWiki: Visualeditor/gadgets — mediawiki, the free wiki engine (2017) [Online;
accessed 20-October-2017].

13. Mozilla Foundation: Cross-origin resource sharing (cors) - http | mdn (2017) [Online;
accessed 20-October-2017].

14. Mrkývka, V.: Návrh chybějících interních odkazů v české wikipedii (2016) [Online;
accessed 31-October-2017].


