
Feeding the “Brno Pipeline”:
The Case of Araneum Slovacum

Vladimír Benko1,2

1 Slovak Academy of Sciences, L’. Štúr Institute of Linguistics
Panská 26, SK-81101 Bratislava, Slovakia

2 Comenius University in Bratislava, UNESCO Chair in Plurilingual and Multicultural
Communication

Šafárikovo nám. 6, SK-81499 Bratislava, Slovakia
vladob@juls.savba.sk

http://www.juls.savba.sk/~vladob

Abstract. Our paper is targeted at our experiences with a set of tools
developed at the Masaryk University in Brno Faculty of Informatics, and
it presents a case study describing our Autumn 2016 web crawl and its
subsequent processing for the Araneum Slovacum Maximum web corpus.

Key words: web-based corpora, web data filtration and deduplication,
Aranea Project

1 Introduction

The “Brno Pipeline” (BPL) is a term coined by Nikola Ljubešić [7] for a complete
set of tools developed at Masaryk University in Brno, Faculty of Informatics
that provide for the effective creation of corpora based on web-derived data. If
complemented by an appropriate morphosyntactic tagger, BPL basically covers
the whole process, practically without any need for additional programming
capacity. Our work is a case study describing the use of BPL for the creation of
Araneum Slovacum Maximum Slovak web corpus that is continuously being built
since 2013 within the framework of the Aranea Project aimed at the creation
of a family of comparable web corpora [3,4]. We will show some general
considerations, describe the parameters of the whole process, and introduce
some tools of our own implementing additional functionality not provided by
BPL itself.

2 Data Crawling

The main BPL component is SpiderLing3, a crawler highly optimized for
downloading textual data from the web [12]. The tool also integrates modules

3 http://corpus.tools/wiki/SpiderLing

Aleš Horák, Pavel Rychlý, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2016, pp. 19–27, 2016. © Tribun EU 2016



20 V. Benko

for web page encoding detection (Chared4), boilerplate removal (jusText5; [8]),
trigram-based language identification (trigrams6), and detection and removal
of identical documents. The user-supplied input consists of a text sample for the
respective language to be used to build a model for the language identification
procedure, and a set of seed URL addresses needed for bootstrapping the crawl
process.

Our experience manifests that the quality of the sample text is worth manual
checking, as text fragments with non-standard orthography or those in foreign
language(s) negatively influence the results of the language detection, resulting
in large quantities of unwanted texts at the output of the procedure.

Within our Aranea Project, several methods of collecting URLs had been
tested. The most convenient proved to be using the BootCaT7 program [1] in the
“seed words” mode. This may be quite simple if a PoS-tagged frequency word
list is available. Such a list could be easily obtained from the Slovak National
Corpus or, as in our case, from the already existing version of Araneum
Slovacum. We decided to use the list of 1,000 most frequent adverbs, which
is the word class with rather general meaning and almost no inflection. The
list was used for extraction of randomly chosen groups of 20 words that
were subsequently submitted as seeds for BootCaT. During each BootCaT run,
200 triples were created to be submitted as search expressions for the Bing8

search engine requiring retrieval of the maximum count of 50 URLs during
each search. Our typical BootCaT session consisted of 5 runs, theoretically
yielding as many as 50,000 URLs. This count, however, usually dropped down
to some 25,000 to 45,000 after removing duplicate URLs, as well as those
pointing to wrong document types (such as PDFs that could not be processed
by SpiderLing).

Probably the most important issue in using SpiderLing is its consumption
of RAM – the author(s) seem to have expected that only very powerful server
configurations would be utilized. As all necessary data structures storing
information on the visited web pages, as well as on “wrong” URLs and
duplicates, are kept in the main memory, the crawling process “freezes” when
allocation of more RAM is not possible. In our case we could afford to dedicate
for the long-time crawling only a machine with 16 GB of RAM, which usually
led to freezing after some 80 hours of SpiderLing operation. The new crawling
had to be started with a fresh set of seed URLs from scratch, risking the
potentially high amount of duplicates appearing in the crawled data.

The RAM consumption, however, can be influenced by several user-settable
parameters, with one of them being the restriction on top-level domain (TLD)

4 http://corpus.tools/wiki/Chared
5 http://corpus.tools/wiki/Justext
6 http://code.activestate.com/recipes/326576-language-detection-using-
character-trigrams/

7 http://bootcat.sslmit.unibo.it/
8 http://www.bing.com/



Feeding the “Brno Pipeline”: The Case of Araneum Slovacum 21

of the crawled documents. No restriction on TLDs results in an increase of RAM
consumption, which may not be quite an intuitive behaviour.

During the SpiderLing operation, exact duplicates are identified (but not
removed) on fly. Removal of the dupes can be performed at the end of a
crawling session by a simple script. The resulting text file is in a “one line
per paragraph” format containing light-weight XML markup describing docs,
paragraphs and (optionally) the deleted boilerplate data.

3 Pre-Tokenization Filtration

Filtration aims at removing the documents containing texts that do not adhere
to a predefined quality standard, and also those containing (partially) duplicate
contents. This process is (at least in part) language-dependent, so we have
written a series of filters that are being sequentially applied to the source data.
Our filters typically consist of two components – the analyser generates a list
of documents with a certain parameter above/under the specified threshold,
and the removal procedure uses this list to split the input file into two parts,
one containing the “good” docs and the other the “bad” ones. The advantage
of such implementation is that the removal procedure can be universal, i.e.,
filter-independent, and also the fact that the removed documents can be
subsequently analysed to provide for optimizing the parameters of filtration.
Most of our own tools have been written in a rather “vintage” programming
language, flex based on regular expressions and C code. The disadvantage
of this approach is that flex is not compliant with Unicode (UTF-8), i.e., all
computations have to be performed on the byte level only, and multi-byte UTF-
8 characters must be treated by the programmer him/herself. On the other
hand, flex programs tend to execute (at least) by order of magnitude faster than
those written in an interpreted language such as Python and the actual speed
of a filter is typically on par with plain file copying.

As we usually work with very large files, the sequence of filters can
be conveniently optimized in order to remove most of the “wrong” data
during the first step(s). The optimal sequence, however, is usually language-
dependent, and in case of Slovak it is as follows:

1. Identification and removal of “insufficiently Slovak” documents. As the
trigram language identification module is usually not able to cope with the
differences among languages with similar character frequency distributions,
not only lots of Czech texts appear in the data, but also some Croatian,
Serbian, Slovene texts can be seen there. Our supplementary filter is based
on counting the average frequencies of Slovak letters with diacritics, and
separately counting two special cases: the missing “š/Š” a “ž/Ž” usually
indicate an encoding issue (mostly Windows 1250 encoding misidentified as
ISO 8859-2), while missing “l’/L’” may mean that it is in fact a Czech text.

2. Identification and removal of exact duplicates by the fingerprint
method [2]. These could not have been removed by SpiderLing itself, if sev-



22 V. Benko

eral independent crawling sessions had been performed. (The partial dupli-
cates would be removed after tokenization only.)

3. Identification and removal of “too Czech” documents. Despite having
passed the Slovak filter, some documents may nonetheless contain Czech text
fragments. An algorithm analogous to that of Slovak is used, with the main
difference being that the characters “ě/Ě”, “ř/Ř” and “ů/Ů” (not present in
Slovak) are counted.

4. Identification and removal of documents with incorrectly interpreted
encoding, containing artefacts such as “po hrebeĹˆoch hĂ’r ÄŒeska, Slovenska
a PoÄžska” (instead of “po hrebeňoch hôr Česka, Slovenska a Pol’ska”) caused
by treating a UTF-8 as 8-bit encoding. Quite often only a small fragment of a
document may be affected. We, however, prefer removing such documents as a
whole.

4 Tokenization

A standard BPL tool for tokenization is unitok [9], complemented by a
language-specific parameter file. As no Slovak parameter file was present in
the standard unitok distribution, we have created a new one based on the anal-
ogous Czech file. The new contents consist mainly of a list of period-final ab-
breviations, partially translated from the Czech list, and subsequently updated
by abbreviations actually found in the Slovak corpus data. The only major tok-
enization policy change was the decision of tokenizing the “multi-period” ab-
breviations such as “s.r.o.” as three separate tokens, so that it would be more
compatible with the language model used by the tagger.

As the Python code takes much longer to execute than the flex filters, we
usually run the tokenization as 4 processes in parallel to make use of the multi-
core processor of our server.

5 Post-Tokenization Filtration

Some encoding and other issues are easier to detect in an already tokenized
text, as the regular expressions can rely on correct word boundaries. This is
why some filters are better run after tokenization only. One of such filters is de-
tecting situations defined as “uppercase letter with diacritics inside otherwise
lowercase word”. There may be several causes of this a phenomenon, such as
a typo – incorrectly pressed SHIFT key (“vŠetko”, “antikvariÁt”), “lost” spaces
between two words (“vŽiline”, “voŠvajciarsku”), incorrect interpretation of en-
coding (“veŸmi”, “zÄava”), or even corrupted HTML entities (“nbspŠali”). We
must, however, be cautious here – some of the tokens detected by this simplistic
approach could represent legitimate neologisms with non-standard orthogra-
phy (“eŠkola”, “eČajovňa”).



Feeding the “Brno Pipeline”: The Case of Araneum Slovacum 23

Table 1: Explanation of ztag.

0 The word has not been found in the lexicon, lemma has been just
copied from word form.

1 The word form has been found in the lexicon and the lemma has been
assigned unambiguously.

2, 3, 4 The word form has been found in the lexicon with 2 to 4-way ambigu-
ity. Lemma contains all possible variants separated by a vertical line
(“|”).

6 Detection of Near-Duplicate Documents

The next important processing step is deduplication. We can conveniently use
another BPL component here – the Onion tool9 [8]. The principle of its operation
and testing its various settings was treated in our work [2]. We only mention
two parameters here: deduplication is performed on 5-grams with similarity
threshold level 0.9.

7 Morphosyntactic Annotation

The tagging process is mentioned only briefly here, as the tagger itself is
neither part of BPL, nor our own tool, and also because annotation deserves
a paper of its own. Besides the use of the tagger itself, our morphosyntactic
annotation involves several additional steps: pre-tagging and post-tagging
filters performing the “lemmatization” of punctuation and special graphic
characters, marking the out-of-vocabulary (OOV) tokens and mapping the
“native” tags universal PoS-only tags.

Our Slovak corpora are currently being tagged by TreeTagger10 [11], using
our own language model trained on the manually disambiguated rmak-4.0
Slovak corpus 11 and the updated SNC morphological database using the SNC
tagset [5].

TreeTagger also implements a guesser assigning tags to tokens not found
in the lexicon. However, it does not try to guess lemmas for such tokens. In
our Aranea corpora, the special attribute ztag is used to indicate the result of
tagging, see Table 1 for explanation.

The tag attribute can be conveniently used in analysing the results of
tagging, as problematic phenomena in the corpus can be queried explicitely.

The pre-tagging and post-tagging filter modify the lemmas and tags for
punctuation and special graphic characters, providing what we may call a

9 http://corpus.tools/wiki/Onion
10 http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
11 http://korpus.sk/ver_r(2d)mak.html



24 V. Benko

Table 2: Resulting vertical file.

word lemma atag tag ztag
Dropbox Dropbox Nn SSis4 0
i i Cj O 1
SkyDrive SkyDrive Nn SSns6 0
bud’ budit’|byt’ Vb VMesb+ 2
inštalujete inštalovat’ Vb VKjpb+ 1
, , Zz Z 1
alebo alebo Cj O 1
používate používat’ Vb VKepb+ 1
jeho jeho Pn PUfs2 1
webového webový Aj AAms2x 1
klienta klient Nn SSms2 1
. . Zz Z. 1

“lemmatization”. For example, several Unicode representations of an apostro-
phe are retained as “word forms”, but mapped to an “ASCII apostrophe” at the
lemma level.

Similarly to other Aranea corpora, the “native” tags are mapped to Ara-
neum Universal Tagset (AUT)12, providing a parallel level of annotation. The
respective values from the AUT tagset in the Aranea corpora are stored in the
atag attribute.

The resulting vertical file after all annotation steps contains five attributes:
word, lemma, atag, tag and ztag, see for example Table 2.

We can see two cases of an OOV item in our sentence, as well as a case
of a 2-way ambiguous lemma – both variants, however, being incorrect in this
particular case.

8 Paragraph-level Deduplication

Our corpus data can be utilized both as source data for various NLP projects
or in a traditional way for “manual” analysis by means of a corpus manager.
Depending on the mode of use, we implement two different policies of
paragraph-level deduplication. For the NLP use, where nobody is expected to
analyse the data by “reading” it, we prefer that the dupe paragraphs be deleted.
For traditional work with a corpus manager we do not want to “destroy” the
cohesion of the text by “randomly” deleting paragraphs inside a document. In
this case we only mark the dupes so that they do not appear in the results of

12 http://aranea.juls.savba.sk/aranea_about/aut.html



Feeding the “Brno Pipeline”: The Case of Araneum Slovacum 25

query operations, yet they could be displayed at the boundary of duplicate and
non-duplicate text.

In both cases we use Onion with standard settings: 5-grams with similarity
threshold 0.9.

9 Corpus Managers

The Araneum Slovacum is used in our Institute by lexicographers within our
local installation of Sketch Engine13 [6]. It is, however, available also for the
general public at the NoSketch Engine14 [10] Aranea Project portal.

10 The Autumn 2016 Araneum Slovacum Maximum Crawl

This section brings some data on our latest crawl and processing session
performed in October 2016. The respective processing steps are shown in
Table 3 and are accompanied by the relevant data on sizes and times. The
crawling process itself consisting of six separate sessions is not included in
the table. During this crawl we decided to experiment with releasing the TLD
restriction.

As seen in Table 3, our decision not to limit the TLDs of the crawled web
pages caused a large amount of “insufficiently Slovak” texts being removed by
the very first filter. A brief checking reveals that most of the removed texts are
Czech. They are not going to be disposed – we can use them during the next
upgrade of our Czech Araneum Bohemicum Corpus. The bottom line, however, is
that not setting TSD was probably not a good decision.

11 Conclusion and Further Work

After using the BPL tools for a fairly long time we can say that they represent
a mature, efficient and robust set providing for all main procedures necessary
to build a web corpus of our own. This also means that, having spare program-
ming resources at hand, these can be targeted to language-dependent filtration
and tiny improvements of the whole process. We can also see that implementa-
tion of the supplementary tools in flex tends to cut significantly the processing
times, which is also the main reason why we have not decided yet to rewrite
them into Python.

Our next plans – besides the fine-tuning of the whole process – includes
testing some alternative tools, most notably the taggers.

Acknowledgments. The presented results were partially obtained under the
VEGA Grant Agency Project No. 2/0015/14 (2014–2016).

13 https://www.sketchengine.co.uk/
14 https://nlp.fi.muni.cz/trac/noske



26 V. Benko

Table 3: Crawling results.

Operation Output

Processing
time

(hh:mm)
Merging crawled text data from six Spider-
Ling sessions, assigning document Ids, fix-
ing minor URL issues introduced by Spi-
derLing markup

7,108,601 docs
35.99 GB

n/a

Identifying and removing “insufficiently
Slovak” documents

1,775,619 docs
(75.02% removed)

9.41 GB

0:20

Identifying and removing exact duplicates
by fingerprint method

1,370,075 docs
(22.84% removed)

7.37 GB

0:17

Removing survived HTML markup and
normalizing encoding (Unicode spaces,
composite accents, soft hyphens, etc.)

7.36 GB 0:06

Removing successive duplicate paragraphs
(by uniq)

7.31 GB 0:05

Identifying and removing “too Czech” doc-
uments

1,276,592 docs
(6.82% removed)

6.51 GB

0:04

Identifying and removing documents with
encoding issues

1,272,622 docs
(0.31% removed)

6.49 GB

0:03

Tokenization by Unitok (4 parallel pro-
cesses, custom Slovak parameter file)

980,058,957 tokens
7.39 GB

1:56

Truncating long tokens 7.39 GB 0:05
Identifying and removing documents with
encoding issues (bis)

1,269,852 docs
(0.22% removed)

7.36 GB

0:04

Segmenting to sentences (rudimentary
rule-based algorithm)

56,969,058 sents
7.87 GB

0:06

Identifying and removing partially identi-
cal documents by Onion (5-grams, similar-
ity threshold 0.9)

754,360 docs
559,387,978 tokens
(42.63% removed)

4.50 GB

0:27

Pre-tagging filtration of punctuation and
special graphic characters

0:03

Tagging by Tree Tagger with custom Slovak
language model (4 parallel processes)

10.60 GB 0:56

Restoring original wordforms, marking
the out-of-vocabulary (OOV) tokens (ztag),
mapping native SNK tags to “PoS-only”
AUT tagset (atag).

82,786,567 tokens
marked OOV (6.43%)

0:08

Identifying and removing or marking par-
tially duplicate paragraphs by Onion

(not performed yet at
present)

0:0



Feeding the “Brno Pipeline”: The Case of Araneum Slovacum 27

References

1. Baroni, B., Bernardini, S.: BootCaT: Bootstrapping corpora and terms from the web.
In: Proc. 4th Int. Conf. on Language Resources and Evaluation, Lisbon : ELRA (2004)

2. Benko, V: Data Deduplication in Slovak Corpora. In: Slovko 2013: Natural Language
Processing, Corpus Linguistics, E-learning, pp. 27–39. RAM-Verlag, Lüdenscheid
(2013)

3. Benko, V.: Aranea: Yet another Family of (Comparable) Web Corpora. In: Text,
Speech, and Dialogue. 17th International Conference, TSD 2014 Brno, Czech Repub-
lic, September 8—12. Proceedings. Eds. P. Sojka et al. Cham – Heidelberg – New York
– Dordrecht – London : Springer, pp. 21—29. ISBN 978-3-319-10816-2. (2014)

4. Benko, V.: Two Years of Aranea: Increasing Counts and Tuning the Pipeline. In
Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC). Portorož : European Language Resources Association (2016) pp.
4245–4248. ISBN 978-2-9517408-9-1. (2016)

5. Garabík, R., Šimková, M.: Slovak Morphosyntactic Tagset. Journal of Language
Modelling, 0(1), pp. 41–63 (2012)

6. Kilgarriff, A., Rychlý, P., Smrž, P., Tugwell, D.: The Sketch Engine. In: Proc. XI
EURALEX Int. Congress, Lorient, pp. 105–116 (2004)

7. Ljubešić, N., Klubička, F.: {bs,hr,sr}WaC – Web corpora of Bosnian, Croatian and
Serbian. Proceedings of the 9th Web as Corpus Workshop (WaC-9). Gothenburg,
Sweden. (2014)

8. Pomikálek, J.: Removing Boilerplate and Duplicate Content from Web Corpora. Ph.D.
thesis, Masaryk University, Brno (2011)

9. Michelfeit, J., Pomkálek, J., Suchomel, V.: Text Tokenisation Using unitok. In Aleš
Horák, Pavel Rychlý (Eds.): Proceedings of Recent Ad-vances in Slavonic Natural
Language Processing, RASLAN 2014, pp. 71—75, 2014. Brno: NLP Consulting (2014)

10. Rychlý, P.: Manatee/Bonito – A Modular Corpus Manager. In: 1st Workshop on
Recent Advances in Slavonic Natural Language Processing. pp. 65–70. Masaryk
University, Brno (2007)

11. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Proceed-
ings of International Conference on New Methods in Language Processing. Manch-
ester (1994)

12. Suchomel V., Pomikálek J.: Efficient Web Crawling for Large Text Corpora. In: 7th
Web as Corpus Workshop (WAC-7), Lyon, France, pp. 24–31. (2012)


