
The Algorithm of Context Recognition in TIL

Marie Duží, Michal Fait

VSB-Technical University Ostrava, Department of Computer Science FEI,
17. listopadu 15, 708 33 Ostrava, Czech Republic

marie.duzi@vsb.cz, michal.fait@vsb.cz

Abstract. The goal of this paper is to introduce the algorithm of context
recognition in the functional programming language TIL-Script. The
TIL-Script language is an operationally isomorphic syntactic variant
of Tichý’s Transparent Intensional Logic (TIL). From the formal point
of view, TIL is a hyperintensional, partial, λ-calculus with procedural
semantics. Due to ramified hierarchy of types it is possible to distinguish
three levels of abstraction at which TIL constructions operate. At the
highest hyperintensional level the object to operate on is a construction
(though a higher-order construction is needed to present this lower-order
construction as an object of predication). At the middle intensional level
the object to operate on is the function presented, or constructed, by a
construction, while at the lowest extensional level the object to operate on
is the value (if any) of the presented function. Thus, a necessary condition
for the development of an inference machine for the TIL-Script language is
recognizing a context in which a construction occurs, namely extensional,
intensional and hyperintensional context, so that inference rules can be
properly applied.

Key words: Transparent Intensional Logic, TIL-Script, three kinds of
context, context-recognition algorithm

1 Introduction

The family of automatic theorem provers, known today as HOL, is getting
increasingly interest in logic, mathematics, and computer science.1 These tools
are broadly used in automatic theorem checking and applied as interactive
proof assistants. As ‘HOL’ is an acronym for higher-order logic, the underlying
logic is usually a version of a simply typed λ-calculus. This makes it possible
to operate both in extensional and intensional contexts, where a value of the
denoted function or the function itself, respectively, is an object of predication.

Yet there is another application that is gaining interest, namely natural-
language processing. There are large amount of text data that we need to anal-
yse and formalize. Not only that, we also want to have question-answer sys-
tems which would infer implicit computable knowledge from these large ex-
plicit knowledge bases. To this end not only intensional but rather hyperinten-
sional logic is needed, because we need to formally analyse natural language

1 See, for instance, [1] or [6].

Aleš Horák, Pavel Rychlý, Adam Rambousek (Eds.): Proceedings of Recent Advances in Slavonic Natural
Language Processing, RASLAN 2016, pp. 51–62, 2016. © Tribun EU 2016

52 M. Duží and M. Fait

in a fine-grained way so that the underlying inference machine is neither over-
inferring (that yields inconsistencies) nor under-inferring (that causes lack of
knowledge). We need to properly analyse agents’ attitudes like knowing, be-
lieving, seeking, solving, designing, etc., because attitudinal sentences are part
and parcel of our everyday vernacular. And attitudinal sentences, inter alia, call
for a hyperintensional analysis, because substitution of a logically equivalent
clause for what is believed, known, etc. may fail. Hyperintensional individua-
tion is frequently also referred to as ‘fine-grained’ or sometimes simply ‘inten-
sional’ individuation, when ‘intensional’ is not understood in the specific sense
of possible-world semantics or in the pejorative sense of flouting various logical
rules of extensional logic.

A principle of individuation qualifies as hyperintensional as soon as it is
finer than necessary equivalence. The main reason for introducing hyperin-
tensionality was originally to block various inferences that were argued to be
invalid. The theoretician introduces a notion of hyperintensional context, in
which the proper substituends are hyperintensions rather than the modal in-
tensions of possible-world semantics or extensions. For instance, if Tilman is
solving the equation sin(x) = 0, then he is not solving the infinite set of multiples
of the number π, because this set is the solution and there would be nothing to
solve, the solver would immediately be a finder. Yet there is something Tilman
is solving. He is trying to execute the procedure specified by λx.sin(x)=0. Thus,
there is the other side of the coin, which is the positive topic of which inferences
should be validated in hyperintensional contexts.

TIL definition of hyperintensionality is positive rather than negative. Any
context in which the meaning of an expression is displayed rather than executed
is hyperintensional.2 Moreover, our conception of meaning is procedural. Hy-
perintensions are abstract procedures rigorously defined as TIL constructions
which are assigned to expressions as their context-invariant meanings. This en-
tirely anti-contextual and compositional semantics is, to the best of our knowl-
edge, the only one that deals with all kinds of context, whether extensional,
intensional or hyperintensional, in a uniform way. The same extensional log-
ical laws are valid invariably in all kinds of context. In particular, there is no
reason why Leibniz’s law of substitution of identicals, and the rule of existen-
tial generalisation were not valid. What differ per the context are not the rules
themselves but the types of objects on which these rules are applicable. In an
extensional context they are values of the functions denoted by the respective
expressions; in an intensional context the rules are applicable on the denoted
functions themselves, and finally in a hyperintensional context the procedures that
is the meanings themselves are the objects to operate on. Due to its stratified
ontology of entities organised in a ramified hierarchy of types, TIL is a logical

2 In [2] we use the terms ‘mentioned’ vs. ‘used’. But since these terms are usually
understood linguistically as using and mentioning expressions, whereas in TIL we use
or mention their meanings, here we vote for ‘displayed’ vs. ‘executed’, respectively.
See also [3].

The Algorithm of Context Recognition in TIL 53

framework within which such an extensional logic of hyperintensions has been
introduced.3

The TIL-Script language is an operationally isomorphic syntactic variant of
TIL. The development of its inference machine is based on these principles.
First, we implement the algorithm of context recognition that makes it possible
to determine the type of an object to operate on. Second, we implement TIL
substitution method (including β-conversion ‘by value’) that makes it possible to
operate on displayed constructions in a hyperintensional context. Finally, we
are going to implement a hyperintensional variant of the sequent calculus for TIL
that has been specified in [4] and [8].

The goal of this paper is the description of the first step, that is of the context-
recognition algorithm. The rest of the paper is organised as follows. In Section
2 we introduce basic principles of the TIL-Script language. The algorithm of
context recognition is described in Section 3 and concluding remarks can be
found in Section 4.

2 Basic Principles of TIL and the TIL-Script language

The TIL syntax will be familiar to those who are familiar with the syntax of
λ-calculi with four important exceptions. First, TIL λ-terms denote abstract pro-
cedures rigorously defined as constructions, rather than the set-theoretic func-
tions produced by these procedures.4 Thus the construction Composition sym-
bolised by [FA1 . . . Am] is the very procedure of applying a function presented
by F to an argument presented by A1, . . . , Am, and the construction Closure
[λx1x2 . . . xnC] is the very procedure of constructing a function by λ-abstraction
in the ordinary manner of λ-calculi. Second, objects to be operated on by com-
plex constructions must be supplied by atomic constructions. Atomic construc-
tions are one-step procedures that do not contain any other constituents but
themselves. They are variables and Trivialization. Variables construct entities
of the respective types dependently on valuation, they v-construct. For each
type there are countably many variables assigned that range over this type (v-
construct entities of this type). Trivialisation 'X of an entity X (of any type even
a construction) constructs simply X. In order to operate on X, the object X must
be grabbed first. Trivialisation is such a one-step grabbing mechanism. Third,
since the product of a construction can be another construction, constructions
can be executed twice over. To this end we have Double Execution of X, 2X, that
v-constructs what is v-constructed by the product of X. Finally, since we work
with partial functions, constructions can be v-improper in the sense of failing to
v-construct an object for a valuation v.5

3 See, for instance,[4].
4 For details see [9] and [3].
5 TIL is one of the few logics that deal with partial functions, see also [7]. There are two

basic sources of improperness. Either a construction is not type-theoretically coherent,
or it is a procedure of applying a function f to an argument a such that f is not defined

54 M. Duží and M. Fait

Since TIL has become a well-known system, see, for instance [2], [9], and
other numerous papers, in what follows we introduce only the grammar of the
TIL-Script language, and characterize the syntactic differences between TIL and
TIL-Script. The TIL-Script functional declarative language is a computational
variant of TIL. It covers all the functionalities specified in the TIL system but
slightly differs in its notation that applies purely the ASCII code. Thus, the
syntax does not involve subscripts and superscripts, Greek characters, and
special characters like ‘∀’or ‘∃’. These special symbols have been replaced by
the key-words like ‘Exist’, ‘ForAll’, ‘Bool’, ‘Time’, ‘World’. Greek ‘λ’ in Closure
is replaced by ‘\’. The abbreviated ‘ατω’ is in TIL-Script written as ‘α@tw’. On
the other hand, the set of basic data types is richer here to cover those useful
in functional programming. In TIL-Script we distinguish the types of real and
natural numbers from discrete times, and we also have the type String. Higher-
order types ∗n are just ∗, we do not mark up the order of constructions, because
it is controlled by the syntactic analyzer. In TIL-Script we also work with the
functional type of a List. This type is defined by the key-word List and the types
of its elements. For instance, List (Real) is a list of real numbers. Though this is
a derived type, because each list can be defined as a function mapping natural
numbers to the respective types, in practice it is much more convenient to work
directly with the type List. The differences in basic types are summarized in
Table 1.

Table 1: TIL-Script basic types
TIL TIL-Script Description
ο Bool Truth-values
ι Indiv Individuals (universe)
τ Time Times
ω World Possible worlds
- Int Integers
τ Real Real numbers
- String String of characters
α Any Unspecified type
∗n ∗ Constructions of order n

Here is the TIL-Script grammar. It is easy to check that this grammar
specifies the language functionally isomorphic to the language specified in the
classical TIL.

start = {sentence };
sentence = sentence content , termination;

at a. For instance, Composition ['Cotg 'π] is v-improper for any valuation v, because
the function cotangent is not defined at the number π in the domain of real numbers.
Single Execution 1X is improper for any valuation v in case X is not a construction.

The Algorithm of Context Recognition in TIL 55

sentence content = type definition | entity definition |
construction | global variable definition;

termination = optional whitespace ,".", optional whitespace;

type definition = "TypeDef", whitespace , type name , optional
whitespace , ":=", optional whitespace , data type;

entity definition = entity name , {optional whitespace ,",",
optional whitespace , entity name}, optional whitespace ,
"/", optional whitespace , data type;

global variable definition = variable name , {optional
whitespace , ",", optional whitespace , variable name},
optional whitespace , "->", optional whitespace , datatype;

construction = (trivialisation | variable | composition |
closure | n-execution) [, "@wt"];

data type = (embeded type | list type | touple type | user
type | enclosed data type) [, ’@tw ’];

embeded type = "Bool" | "Indiv" | "Time" | "String" | "World"
| "Real" | "Int" | "Any" | "*";

list type = "List", optional whitespace , "(", optional
whitespace , data type , optional whitespace , ")";

touple type = "Tuple", optional whitespace , "(", optional
whitespace , data type , optional whitespace , ")";

user type = type name;
enclosed data type = "(", optional whitespace , data type , {

whitespace , data type}, optional whitespace ")";

variable = variable name;
trivialisation = "’", optional whitespace , (construction |

entity);
composition = "[", optional whitespace , construction ,

optional whitespace , construction , {construction},
optional whitespace , "]";

closure = "[", optional whitespace , lambda variables ,
optional whitespace , construction , optional whitespace ,
"]";

lambda variables = "\", optional whitespace , typed variables;
typed variables = typed variable , {optional whitespace ,",",

typed variable };
typed variable = variable name , [optional whitespace , ":",

optional whitespace , data type];
n-execution = "^", optional whitespace , nonzero digit ,

optional whitespace , (construction | entity);

entity = keyword | entity name | number | symbol;

type name = upperletter name;
entity name = upperletter name;
variable name = lowerletter name;

56 M. Duží and M. Fait

keyword = "ForAll" | "Exist" | "Every" | "Some" | "True" | "
False" | "And" | "Or" | "Not" | "Implies ";

lowercase letter = "a" | "b" | ... | "z";
uppercase letter = "A" | "B" | ... | "Z";
symbols = "+" | "-" | "*" | "/";
zero = "0";
nonzero digit = "1" | "2" | ... | "9";
number = (zero | nonzero digit), { zero | nonzero digit }

[".", (zero | nonzero digit), { zero | nonzero digit }];
upperletter name = uppercase letter , { lowercase letter |

uppercase letter | "_" | zero | nonzero digit };
lowerletter name = lowercase letter , { lowercase letter |

uppercase letter | "_" | zero | nonzero digit };
whitespace = whitespace character , optional whitespace;
optional whitespace = { whitespace character };
whitespace character = ? space ? | ? tab ? | ? newline ?;

To illustrate TIL-Script analysis, we adduce an example of the analysis
of the sentence “Tom calculates cotangent of the number π” followed by its
derivation tree with type assignment. In the interest of better readability and a
clear arrangement of the derivation tree, we use here Greek letters for types, as
it is in classical TIL. According to the above grammar, the types are as follows:
ο= Bool, ι= Indiv, τ= Time, ω= World, οτω = Bool@tw, ∗n = ∗.

\w\t[[['Calculate w] t] 'Tom '['Cot'π]]

The resulting type is οτω, that is the type of the proposition that Tom calculates
Cotangent of π. The types of the objects constructed by 'π, 'Cot and ['Cot 'π], that
is τ, (ττ) and τ, respectively, are irrelevant here, because these constructions
are not constituents of the whole construction. They occur only displayed by
Trivialization '['Cot 'π], that is hyperintensionally. We are going to deal with this
issue in the next section.

The Algorithm of Context Recognition in TIL 57

3 Context Recognition

The algorithm of context recognition is based on definitional rules presented in
[2], §2.6. Since these definitions are rather complicated, here we introduce just
the main principles. TIL operates with a fundamental dichotomy between hy-
perintensions (procedures) and their products, i.e. functions. This dichotomy
corresponds to two fundamental ways in which a construction (meaning) can
occur, to wit, displayed or executed. If the construction is displayed, then the pro-
cedure itself becomes an object of predication; we say that it occurs hyperin-
tensionally. If the construction occurs in the execution mode, then it is a con-
stituent of another procedure, and an additional distinction can be found at
this level. The constituent presenting a function may occur either intensionally
or extensionally. If intensionally, then the whole function is an object of predi-
cation; if extensionally, then a functional value is an object of predication. The
two distinctions, between displayed/executed and intensional/extensional oc-
currence, enable us to distinguish between the three kinds of context:

– hyperintensional context: a construction occurs in a displayed mode (though
another construction at least one order higher needs to be executed to
produce the displayed construction)

– intensional context: a construction occurs in the executed mode to produce
a function but not its value (moreover, the executed construction does not
occur within another hyperintensional context)

– extensional context: a construction occurs in the executed mode in order
to produce particular value of a function at a given argument (moreover,
the executed construction does not occur within another intensional or
hyperintensional context).

The basic idea underlying the above trifurcation is that the same set of
logical rules applies to all three kinds of context, but these rules operate on
different complements: procedures, produced functions, and functional values,
respectively. A substitution is, of course, invalid if something coarser-grained
is substituted for something finer-grained.

The algorithm of context recognition is realized in the Prolog programming
language.6 In the phase of the syntactic analysis of the TIL-Script language, a
Prolog database of constructions and types is created. This database consists of
three main parts:

1. Typed objects are pairs (name, type), represented as binary relations (type/2).
2. Typed global variables are pairs (name, type) represented as binary relations

(globalVariable/2).
3. Constructions; constructions are the most complicated case. They are repre-

sented as 10-ary relations (construction/10);

6 Context recognition system download is available here: http://elogika.vsb.cz/
projects/GA15-13277S/.

58 M. Duží and M. Fait

Fig. 1: Derivation tree of the construction

Each construction or subconstruction denoted by a term of an input TIL-
Script file is recorded as a relation construction/10. For example, having the
term ‘[\x ['+ '5 '4]]’, five records of construction/10 are created, because five
constructions are denoted here; they are [\x ['+ '5 '4]], ['+ '5 '4], '+, '5 and
'4. Each record contains a unique identifier ID, which can be referred to by
another construction. In this way we obtain a derivation tree structure of each
construction. Figure 1 illustrates the tree structure of the construction assigned
to the sentence “Tillman is seeking last decimal of the number π.” As it is
common in Prolog, the algorithm applies the depth-first search strategy with
backtracking. The numbers of nodes in Figure 1 illustrate this strategy. The
algorithm recursively calls itself for every child node or terminates if the current
node is a leaf (that is a construction record without a child ID list). Whenever a
leaf node is reached, backtracking comes into the scene and another branch is
being searched.

The algorithm of context recognition consists of several steps. First, we rec-
ognize hyperintensional occurrences of displayed constructions, that is those
that occur in the scope of a Trivialization, the effect of which, however, has not

The Algorithm of Context Recognition in TIL 59

been cancelled by Double Execution, because 2'C is equivalent to C. Moreover,
a higher-level context is dominant over a lower-level one. Thus, if C occurs in D
hyperintensionally, then all the subconstructions of C occur hyperintensionally
in D as well. Here is the algorithm to determine hyperintensional occurrences.

Name: determineHyperintensional
Input: construction C, constant S indicating whether a current
construction occurrence is displyed or executed; in the beginning
S is set to unknown.

If S=”mentioned”
Save hyperintensional context of construction C

If S=”used” and C is trivialisation of another construction ‘D
call determineHyperintensional(D,"mentioned")

else
If S=”used” and C is double execution ^2D and D is
trivialization of a construction 'E

call determineHyperintensional(E,"used")
Else

P = child nodes of construction C
For every construction X in P do

determineHyperintensional (X,S)

If the occurrence of C within D is not hyperintensional, then it occurs in
the execution mode as a constituent of D, and the object that C v-constructs
(if any) plays the role of an argument to operate on. In such a case we have
to distinguish whether C occurs intensionally or extensionally. To this end we
first distinguish between extensional and intensional supposition of C. Since C
occurs executed, it is typed to v-constructs a function f of type (αβ1 . . . βn), n
possibly equal to zero. Now C may be composed within D with constructions
D1. . . Dn which are typed to v-construct the arguments of the function f, that
is Composition [CD1 . . . Dn] is a constituent of D. In such a case we say that C
occurs in D with extensional supposition. Otherwise C occurs in D with intensional
supposition that is intensionally.

The algorithm first determines occurrences with extensional supposition,
and then it is in a position to check whether a given construction that occurs
with extensional supposition is, or is not occurring within a λ-generic context.
If the context is non-generic, then the respective occurrence is extensional.
Otherwise, the context is intensional. Here is the algorithm for extensional-
supposition recognition.

Name: extSupositionConstructions
Output: set of constructions with extensional suposition

For every construction C do
If C is composition [X Y1...Ym]

If C does not occur in hyperintensional context

60 M. Duží and M. Fait

Add construction X to the result
If C is execution ^1X or ^2X, where X is object of order one

If C does not occur in hyperintensional context
Add construction C to the result

For every execution C in form ^2X, where X v-constructs object of
order one

If C does not occur in hyperintensional context
Add construction C to the result

The algorithm checking λ-genericity is specified as per Def. 11.6 of [5]. In
principle, it checks whether to each Closure there is a pairing Composition. This
is so because the procedure of constructing a function by λ-abstraction raises
the context up to the intensional level, while the dual procedure of applying a
function to an argument decreases the context down. The algorithm examines
the derivation tree of a construction and dynamically creates a generic-type
list that determines the genericity level. If the list is empty, the context is non-
generic, otherwise it is λ-generic.

For example, the generic-type list of the Trivialisation '+ occurring in the
following constructions is as follows:

– in Composition ['+ x y] the list is empty, hence non-generic context;
– in Closure [\x:Real ['+ x y]] the context is [[Real]]-generic;
– in Closure [\y:Real [\x:Real ['+ x y]]] the context is [[Real],[Real]]-generic;
– in Composition [[\y:Real [\x:Real ['+ x y]]] '5] the context is again [[Real]]-

generic;
– in Composition [[[\y:Real [\x:Real ['+ x y]]] '5] '5] the list is empty, hence

non-generic context;
– in Closure [\x:Real, y:Real ['+ x y]] the context is [[Real,Real]]-generic.

The algorithm for generic type recognition is specified as follows:

Name: genericity
Input: constructions D and C, where D is constituent C
Output: generic type

1.If C is atomic construction and C = C
result = non-generic type

2.if C is closure [\x1,...,xm X]; x1 →v γ1, ..., xm →v γm, then:
a)If D = C,

β = genericity(X,X)
result = ((γ1,...,ym)β)

b)If D is constituent X,
β = genericity(D,X)
result = ((y1,...,ym)β)

3.If C is composition [X Y1...Ym]; Y1 →v γ1,...,Ym →v γm.
a)If D=C

result = genericity(X,C)

The Algorithm of Context Recognition in TIL 61

b)If D is constituent X
G=genericity(X,X)
If G is non-generic type

result=genericity(D,X)
Else if G is generic type ((γ1,...,γm)β)

result = β
c)If D is constituent of one construction Y from Yi

result = genericity(D,Y)
4.If C is execution ^2X or ^1X where X is construction

If D is constituent X
result = genericity(D,X)

The last step of the context-recognition algorithm is easy. For every con-
struction, if the occurrence is not hyperintensional or extensional, the result is
intensional context.

Name: determineIntensional
For every construction C

If C does not occur intensionally neither hyperintensionally
Save intensional context of construction C

Here is an example of the result of the syntactic analysis including context-
recognition of the construction

[\w: World [\t:Time ['Seek@wt 'Tilman '['Lastdec 'Pi]]]].

<construction occurrence ="Intensional"
construction ="[\w:World [\t:Time [[['Seek w] t] 'Tilman '['Lastdec 'Pi]]]]">

<construction occurrence ="Intensional" construction ="[\t:Time [[['Seek w] t] 'Tilman '['Lastdec 'Pi]]]">
<construction occurrence ="Intensional" construction ="[[['Seek w] t] 'Tilman '['Lastdec 'Pi]]">

<construction occurrence ="Intensional" construction ="[['Seek w] t]">
<construction occurrence ="Intensional" construction ="['Seek w]">

<construction occurrence ="Intensional" construction ="'Seek"></construction>
<construction occurrence ="Intensional" construction ="w"></construction>

</construction>
<construction occurrence ="Intensional" construction ="t"></construction>

</construction>
<construction occurrence ="Intensional" construction ="'Tilman"></construction>
<construction occurrence ="Intensional" construction ="'['Lastdec 'Pi]">

<construction occurrence ="Hyperintensional" construction ="['Lastdec 'Pi]">
<construction occurrence ="Hyperintensional" construction ="'Lastdec"></construction>
<construction occurrence ="Hyperintensional" construction ="'Pi"></construction>

</construction>
</construction>

</construction>
</construction>

</construction>

4 Conclusion

We introduced the computational variant of Transparent Intensional Logic,
the TIL-Script functional programming language. Our main novel result is the
implementation of the algorithm that recognises three kinds of context, namely
extensional, intensional and hyperintensional, which is a necessary condition
for the implementation of the TIL-Script inference machine. It is an important

62 M. Duží and M. Fait

result, because when testing the algorithm, it turned out that there are still slight
unintended inaccuracies in the definitions as presented in [5], which in turn led
to their revision.

Acknowledgments. This work has been supported by the Grant Agency
of the Czech Republic project No. GA15-13277S, “Hyperintensional logic for
natural language analysis” and by the internal grant agency of VSB-Technical
University Ostrava, project No. SP2016/100, “Knowledge modelling and its
applications in software engineering II”.

References

1. Benzmüller, Ch. (2015): Higher-Order Automated Theorem Provers. In All about
Proofs, Proof for All, David Delahaye, Bruno Woltzenlogel Paleo (eds.), College
Publications, Mathematical Logic and Foundations, pp. 171-214.

2. Duží, M., Jespersen B., Materna P. (2010): Procedural Semantics for Hyperintensional
Logic; Foundations and Applications of Transparent Intensional Logic. Berlin, Heidelberg:
Springer.

3. Duží, M., Jespersen, B. (2015): Transparent Quantification into Hyperintensional
objectual attitudes. Synthese, vol. 192, No. 3, pp. 635-677.

4. Duží, M. (2012): Extensional logic of hyperintensions. Lecture Notes in Computer
Science, vol. 7260, pp. 268-290.

5. Duží, M., Materna P. (2012): TIL jako procedurální logika. Aleph Bratislava.
6. Gordon, M. J. C., Melhan T. F. (eds).: Introduction to HOL: A theorem proving environ-

ment for higher order logic. Cambridge University Press, 1993.
7. Moggi, E. (1988): The Partial Lambda-Calculus, PhD thesis, University of Edinburg,

available as LFCS report at http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-
63/.

8. Tichý, P. (1982): Foundations of partial type theory. Reports on Mathematical Logic, vol.
14, pp. 52-72. Reprinted in (Tichý 2004: 467-480).

9. Tichý, P. (1988):The Foundations of Frege’s Logic. Berlin, New York: De Gruyter.
10. Tichý, P. (2004): Collected Papers in Logic and Philosophy, eds. V. Svoboda, B. Jespersen,

C. Cheyne. Prague: Filosofia, Czech Academy of Sciences, and Dunedin: University
of Otago Press.

