
Text Tokenisation Using unitok

Jan Michelfeit, Jan Pomikálek, and Vít Suchomel

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{xmichelf,xsuchom2}@fi.muni.cz

Lexical Computing Ltd.
Brighton, United Kingdom

name.surname@sketchengine.co.uk

Abstract. This paper presents unitok, a tool for tokenisation of text in
many languages. Although a simple idea – exploiting spaces in the text to
separate tokens – works well most of the time, the rest of observed cases is
quite complicated, language dependent and requires a special treatment.
The paper covers the overall design of unitok as well as the way the tool
deals with some language or web data specific tokenisation cases. The
rule what to consider a token is briefly described. The tool is compared to
two other tokenisers in terms of output token count and tokenising speed.
unitok is publicly available under the GPL licence at http://corpus.
tools.

Keywords: tokenisation, corpus tool

1 Introduction

Tokenisation of a text is the process of splitting the text to units suitable
for further computational processing. It is an important data preparation
step allowing to perform more advanced tasks like morphological tagging or
parsing. Applying a good tokenisation method is necessary for building usable
text corpora.

Using spaces in the text as token delimiters is a simple and quick way
to tokenise text. In fact, the presented approach is based on this observation.
However, there are many complicated cases to deal with which cannot be
solved just by splitting tokens by space characters. Some cases are language
dependent and require a special treatment. Other sequences to recognize as
single or multiple tokens come from the web pages – a rich yielding source of
data in text corpora [4].

The aim of this work was to develop a tokeniser

– fast – able to process big data in billion word sized corpora,
– reliable – robust to deal with messy web data,

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 71–75, 2014. c○ NLP Consulting 2014

72 Jan Michelfeit, Jan Pomikálek, and Vít Suchomel

– universal – allowing at least basic support for all writing systems utilizing
a whitespace to separate words1,

– easy to maintain – adding new tokenisation rules or making corrections
based on evaluation should be straightforward,

– text stream operating – text in, tokenised text (one token per line) out2,
– reversible – the tokenised output must contain all information needed for

reconstructing the original text3

The resulting tool called unitok has been developed since 2009. It has become
a part of corpus processing pipeline used for many corpora [3,1,6] since then.

2 The Problem of Words

There are legitimate questions and related problems concerning the desired
behaviour of a good tokeniser: What is a word, what is a sentence? [2] Our
approach to unitok is based on the point of view of a corpus user. It is important
to know what tokens the users search for in the corpus concordancer (and other
corpus inspection tools) and what tokens they expect to figure in the corpus
based analysis (such as word frequency lists, collocations (Word Sketches),
thesaurus, etc.).

The answer is the users search for sequences of letters. Sequences of
numbers, marks, punctuation, symbols, separators and other characters should
be clustered together in order to be counted as single tokens in corpus statistics.
The definition of the charater classes and mapping of each letter to a class has
been made by The Unicode Consortium.4

3 Implementation

3.1 Related Work

A set of rules in flex5 has been used by [5] to implement a tokeniser. We chose
to write a Python script heavily utilising the re library for manipulation with

1 The dependency of the tool on space characters separating words is a prerequisite
for a broad coverage of languages/writing systems but rules out applicability to
processing text in languages such as Chinese, Korean, Japanese and Thai. We have to
employ other tools made for the particular language/script in these cases to tokenise
texts well.

2 The stream operating feature is necessary for making the tool a part of a corpus
processing tool pipeline: the source plain text goes in, each processing tool is applied
in a defined order to the result of the previous tool, the fully processed (tokenised,
tagged, annotated, etc. data comes out.

3 Reconstructing the original text can be useful for applying the tokenisation again after
improving the tokenisation rules. Other tokenisers we use do not offer this option,
therefore a copy of the original plain text has to be kept along with the tokenised
vertical.

4 http://unicode.org, the character class mapping is published at http://www.
unicode.org/Public/UNIDATA/UnicodeData.txt (accessed 2014-11-17).

5 A fast lexical analyzer, http://flex.sourceforge.net/

Text Tokenisation Using unitok 73

regular expressions6. The reason is we wanted to deal with some practical
issues (described later on in this chapter) programmatically rather than by
string/regexp matching and in the way which is more familiar to us.

We would like to acknowledge Laurent Pointal’s Tree Tagger wrapper7

which contributed the regular experessions to match the web related tokens.
Unlike the Tree Tagger wrapper, unitok does just the tokenisation. It works
independently of a particular tagger and thus can be combined with any tagger
operating on text streams. The subsequent tagging, if required, is defined by
the whole text processing pipeline.

3.2 The Method

As has been stated, unitok comes as a self standing Python script utilising the
re library and operating on a text stream. The input text is decoded to unicode,
normalised, scanned for sequences forming tokens, the tokens are separated
by line breaks and the result vertical (one token per line) is encoded into the
original encoding.

The normalisation deals with SGML entities by replacing them with unicode
equivalents (e.g. ‘&’ by ‘&’ or ‘–’ by ‘–’). Unimportant control
characters (the ‘C’ class in the Unicode specification) are stripped off. All
whitespace (the ‘S’ class, e.g. a zero width space or a paragraph separator) is
replaced by a single ordinary space.

Sequences of letters (i.e. words) are kept together. Sequences of numbers,
marks, punctuation, and symbols kept by the normalisation are clustered to-
gether. The present SGML markup (usually HTML/XML) is preserved. The
script also handles web related tokens: URLs, e-mail addreses, DNS domains,
IP addresses are recognized. General abbreviations (uppercase characters op-
tionally combined with numbers) are recognized.

Predefined language specific rules are applied. These are recognizing clitics
(e.g. ‘d’accord’ in French)8, matching abbreviations (e.g. ‘Prof.’ generally, ‘např.’
in Czech)9) or special character rules (e.g. Unicode positions from 0780 to 07bf
are considered word characters in Maldivian script Thaana).

The reversibility of tokenisation is ensured by inserting a ‘glue’ XML
element between tokens not separated by a space in the input data. The most
common case is the punctuation. An example showing the placement of the
glue tag is given by Figure 1. The vertical with glue tags can be reverted to the
original plain text using a short accompanying script vert2plain.

The language specific data (clitics, abbreviations, special word characters)
are currently available for Czech, Danish, Dutch, English, French, Finnish,

6 https://docs.python.org/2/library/re.html
7 http://perso.limsi.fr/pointal/dev:treetaggerwrapper
8 Lists of clictics were taken from the TreeTagger: http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger/

9 The lists of language specific abbreviations were taken from the respective Wikipedia
page, e.g. http://cs.wiktionary.org/wiki/Kategorie:%C4%8Cesk%C3%A9_zkratky
for Czech.

74 Jan Michelfeit, Jan Pomikálek, and Vít Suchomel

The
"
<g/>
end
<g/>
"
<g/>
.

Fig. 1: Example of tokenised and verticalised string ‘The "end".’ showing the
placement of the glue tag <g/>.

German, Greek, Hindi, Italian, Maldivian, Spanish, Swedish, Yoruba. Texts
in other language are processed with default setting (making e.g. the ‘prof.’
abbreviation always recognizable).

The output can be tagged (or generally further processed) by any tool
operating on text streams with one token per line and XML tags.

4 Evaluation

A comparison of the output token count and the speed (expressed in output
tokens per second) of three tokenisers – unitok, TreeTaggerWrapper and Freeling
– can be found in Table 1. Two measurements were carried out using 1 GB
sized plain texts in six European languages on a single core of Intel Xeon CPU
E5-2650 v2 2.60 GHz. Specific recognition of clitics and abbreviations was on
for all except Russian where the general setting was in effect. Only languages
supported by TreeTaggerWrapper and Freeling were included in the test.

We found there is a noticeable difference between the tools in the number
of output tokens. The speed tests revealed unitok was the slowest of the three
tools but still quite sufficient for fast processing of large text data. Part of the
performance drop is caused by providing the glue marks.

5 Conclusion

unitok is a fast processing tool for tokenisation of texts with spaces between
words. The main benefits are good coverage of various sequences of characters,
especially web phenomena, normalisation of messy control or whitespace
characters, reversibility of the tokenised output and extensibility by language
specific rules.

The tool has been successfully used for tokenising source texts for building
large web corpora. The evaluation suggests we should consider improving the
script to increase the speed of tokenisation in the future.

Acknowledgements This work has been partly supported by the Ministry
of Education of CR within the LINDAT-Clarin project LM2010013 and by the
Czech-Norwegian Research Programme within the HaBiT Project 7F14047.

Text Tokenisation Using unitok 75

Table 1: Comparison of tokenising speed and token count of unitok, Freeling
and TreeTaggerWrapper. unitok is the base of the relative token count and the
relative tokenising speed.

Language tool output tokens rel tok duration tok/s rel tok/s
English Unitok 207,806,261 100% 6,880 s 30,200 100%

TTWrapper 200,122,178 −3.70% 2,380 s 84,100 +178%
Freeling 215,790,562 +3.84% 2,670 s 80,800 +168%

Spanish Unitok 196,385,184 100% 6,250 s 31,400 100%
TTWrapper 204,867,056 +4.32% 2,260 s 90,600 +188%
Freeling 201,413,272 +2.56% 2,040 s 98,700 +214%

German Unitok 171,354,427 100% 5,530 s 31,000 100%
TTWrapper 179,120,243 +4.53% 2,360 s 75,900 +145%

French Unitok 202,542,294 100% 6,400 s 31,600 100%
TTWrapper 242,965,328 +20.0% 2,870 s 84,700 +168%
Freeling 211,517,995 +4.43% 2,300 s 92,000 +191%

Russian Unitok 98,343,308 100% 3,170 s 31,023 100%
Freeling 102,565,908 +4.29% 1,450 s 70,800 +128%

Czech Unitok 183,986,726 5,960 s 30,900

References

1. Vít Baisa, Vít Suchomel, et al. Large corpora for turkic languages and unsupervised
morphological analysis. In Proceedings of the Eighth conference on International Language
Resources and Evaluation (LREC’12), Istanbul, Turkey. European Language Resources
Association (ELRA), 2012.

2. Gregory Grefenstette and Pasi Tapanainen. What is a word, what is a sentence?: Problems
of Tokenisation. Rank Xerox Research Centre, 1994.

3. Miloš Jakubíček, Adam Kilgarriff, Vojtěch Kovář, Pavel Rychlỳ, Vít Suchomel, et al.
The tenten corpus family. In Proc. Int. Conf. on Corpus Linguistics, 2013.

4. Adam Kilgarriff and Gregory Grefenstette. Introduction to the special issue on the
web as corpus. Computational linguistics, 29(3):333–347, 2003.

5. David D Palmer. Tokenisation and sentence segmentation. Handbook of natural
language processing, pages 11–35, 2000.

6. Vít Suchomel. Recent czech web corpora. In Pavel Rychlý Aleš Horák, editor, 6th
Workshop on Recent Advances in Slavonic Natural Language Processing, pages 77–83,
Brno, 2012. Tribun EU.

