Fast Construction of a Word <> Number Index
for Large Data

Milos Jakubitek, Pavel Rychly, and Pavel Smerk

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanicka 68a, 602 00 Brno, Czech Republic

{jak,pary, xsmerk}@fi.muni.cz

Abstract. The paper presents a work still in progress, but with promising
results. We offer a new method of construction of word to number and
number to word indices for very large corpus data (tens of billions of
tokens), which is up to an order of magnitude faster than the current
approach. We use HAT-trie for sorting the data and Daciuk’s algorithm for
building a minimal deterministic finite state automaton from sorted data.
The latter we reimplemented and our new implementation is roughly
three times faster and with smaller memory footprint than the one of
Daciuk. This is useful not only for building word<*number indices, but
also for many other applications, e.g. building data for morphological
analysers.

Key words: word to number index, number to word index, finite state
automata, hat-trie

1 Introduction

The main area of interest of this work lies in computer processing of large
amounts of text (text corpora) with heavy annotation using a corpus manage-
ment system that provides the user with fast and efficient search in the text
data. The primary usage focuses on research in natural language processing,
both from a more linguistically motivated or more language engineering ori-
ented perspective, and on the exploitation of these tools in third-party industry
applications in the domain of information systems and information extraction.

For any such system to perform well on large data, complex indexing and
database management system must be in place — and so is this the case of the
Manatee corpus management system which was the subject of our experiments.

Any reasonable indexing of text data by means of individual words (tokens
in text) starts with providing a fast word-to-number and number-to-word
mapping that allows to build the database indices on numbers, not words.
This enables faster comparison, search and sort, and is also much more space
efficient.

Ale$ Horék, Pavel Rychly (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2013, pp. 6367, 2013. (© Tribun EU 2013

64 Milog Jakubitek, Pavel Rychly, and Pavel Smerk

In this paper we particularly focus on constructing such word<>number
mapping when indexing large text corpora. We first describe the current
procedure used within the Manatee corpus management system and discuss
its deficiencies when processing very large input data — here by large we
refer to text collections containing billions of tokens. Then we present a new
implementation exploiting a HAT-trie structure and provide an evaluation
showing a significant speedup in building the mapping and henceforth also
indexing of the whole text corpus.

2 Word<+number mapping in Manatee

2.1 Lexicon structure

The corpus management system Manatee uses the concept of a lexicon for pro-
viding the word<*number mapping, thus implementing two basic operations:

- str2id —retrieving an ID according to its word string
— 1d2str - retrieving a word according to its ID

The lexicon is constructed from source data when compiling all corpus
indices and consists of three data files:

- .lexfile —a plain text file containing the word strings separated by a NULL
byte, in the order of their appearance in the source text.

- .lex.idx file — a fixed-size (4 B) integer index containing offsets to the .lex
file. The id2str operation for a given ID 7 is implemented by retrieving the
string offset at the 4 - n! byte in this file and reading at that offset in the
.lex file (until the first NULL byte).

- .lex.srt file — a fixed-size (4 B) integer index containing IDs sorted
alphabetically. The str2id operation for a given string s is implemented
by binary search in this file (retrieving strings for comparison as described
above).

2.2 Building the lexicon

When compiling corpus indices, new items are added to the lexicon in the order
as they appear in the source texts and the lexicon is used for retrieving the ID of
items already added to the lexicon. The system keeps two independent caches
to speed up the process: one contains recently used lexicon items, another items
that were recently added. As soon as the latter one reaches some threshold size,
the cache is cleared — written to the lexicon and the lexicon must be re-sorted.
This is a significant time bottleneck and as the lexicon grows, the time spent on
its sorting grows rapidly too.

For more than two decades the data sizes of text corpora allowed not to care
about the compilation time much, it was mainly the runtime of the database
(i.e. querying) that mattered and that was subject to development. As data sizes
of current text corpora grow to dozens of billions of tokens [1], the compilation
time is being counted in days and starts to be an obstackle for data maintenance.
Therefore we considered alternative implementations to overcome this issue.

Fast Construction of a Word«+>Number Index for Large Data 65

3 Experiments and results

We demonstrate our results on three sets of corpus data. As can be seen in the
Table 1, the sets differ not only in size: Tajik language uses Cyrillic, which
means the words are two times longer (counted in bytes) only due to the
encoding, and the French corpus from OPUS project! obviously uses rather
limited vocabulary.

Table 1: Data sets used in the experiments.
data set size words unique size language
100M 1148MB 110M 1660k 31MB Tajik
1000M 5161MB 957M 1366k 14MB French
10000M 69010 MB 12967 M 27892k 384MB English

HAT-trie [2] is a cache-conscious data structure which combines trie and hash
and allows sorted access. In general, for indexing the natural language strings,
it is among the best solutions regarding both time and space. We used it?
to create files described in the previous section. Results in the Table 2 show
that hat-trie is up to an order of magnitude faster than the current solution
encodevert.

Table 2: Comparison of encodevert and hat-trie.

encodevert hat-trie
dataset time memory time memory outputsize
100M 311m 044GB 265s 0.12GB 44 MB
1000M 23:01m 040GB 221 m 0.04GB 25MB
10000M 7:38h 0.98GB 44:37 m 0.78GB 607 MB

If a server is to support concurrent queries to multiple corpora, the indices
for these corpora generated by encodevert (or now hat-trie) has to be loaded
in memory. The last cell in the Table 2 indicates that for very large corpora
it can consume a lot of memory, thus we tried to reduce this data. We used
Jan Daciuk’s fsa tools® which are able to convert a sorted set of strings to a
deterministic acyclic finite state automaton usable for (static) minimal perfect
hashing, i.e. string<»number translation, where the number is a rank in the
sorted set of strings. We started with version 0.51 compiled with STOPBIT and
NEXTBIT options, but because the original tools were rather memory and time
consuming, we reimplement it and significantly reduce both time and space

Ihttp://opus.lingfil.uu.se/, mostly legal texts.

2 We use a free implementation from https://github.com/dcjones/hat-trie.

3 www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html
pg.gaa.p y p y p

66 Milog Jakubitek, Pavel Rychly, and Pavel Smerk

required for the automaton costruction (we did not change the output format).
The Table 3 compares the results of the original version of fsa_ubuild acting
on unsorted corpus data and our new approach. The last column shows new
sizes of indices.

The last table, Table 4, compares only the original and reimplemented
algorithm for sorted data. The hat-trie sort column are the costs of using hat-
trie as a data pre-sort. Two results are obvious: firstly, having such an effective
sort algorithm, to sort data and then use the algorithm for sorted data is always
better than fsa_ubuild, secondly, to reduce the used memory it is better to flush
sorted data to hard disk before fsa construction, as the time penalty is minimal.

Table 3: Building automata for perfect hashing from unsorted data.

fsa_ubuild hat 4 new fsa
dataset time memory time memory outputsize
100M failed 31.7s 0.09GB 15MB
1000M 1548 m 0.11GB 2:34 m 0.06 GB 11 MB
10000M 7:44h 31.01GB 1:08 h 1.47GB 363 MB

Table 4: Sorting data and building automata for perfect hashing from sorted
data.

hat-trie sort fsa_build new fsa
dataset time memory time memory time memory
100M 284s 0.06GB 124s 021GB 42s 0.03GB
1000M 2:51m 0.04GB 56s 011GB 18s 0.03GB
10000M 59:16 m 0.77GB 35:15 m 27.07GB 9:36 m 0.71GB

4 Future work

The presented results are only preliminary, as it is only a proof of concept, not
a final solution. We plan to further reduce both time and space of the automata
construction, as well as their final size. The final automaton can be built di-
rectly from the input data which would cut the required memory to less than
two thirds. The use of UTF-8 labels would reduce the space even further. We
also want to employ some variable length encoding of numbers and addresses
(similar to [3], but computationally simpler one). We suspect Daciuk’s “tree
index” used to discovering already known nodes during the automaton con-
struction to be slow for large data and we hope that simple hash will decrease
the compilation time significantly at the acceptable expense of some additional
space.

Fast Construction of a Word«+>Number Index for Large Data 67

Acknowledgements This work has been partly supported by the Ministry of Educa-
tion of CR within the Lindat Clarin Center LM2010013.

References

1. Pomikalek, J., Rychly, P, Jakubi¢ek, M.: Building a 70 billion word corpus of English
from ClueWeb. In: Proceedings of the Eight International Conference on Language
Resources and Evaluation (LREC’12). (2012) 502-506

2. Askitis, N., Sinha, R.: Hat-trie: a cache-conscious trie-based data structure for strings.
In: Proceedings of the thirtieth Australasian conference on Computer science-Volume
62, Australian Computer Society, Inc. (2007) 97-105

3. Daciuk, J., Weiss, D.: Smaller representation of finite state automata. Theoretical
Computer Science 450 (2012) 10-21

