
Reproducing Czech Syntactic Parsing Results
Published in CoNLL Tasks

Lucia Kocincová

NLP Centre, Faculty of Informatics,
Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic

lucyia@mail.muni.cz

Abstract. In this paper, I describe the approach on reproducing MST
Parser and MaltParser results for Czech dependency parsing which were
published in several tasks of Conference on Computational Natural
Language Learning. Firstly, I briefly describe basic principles of parsers.
Then, I include features and options that need to be optimized while using
the parsers to get the desired results on testing files as well as evaluation
methodology used in my research. I also shortly mention hardware
requirements for those, who would like to train their own model for
Czech language parsing. Finally, I include the practical application of
trained models for our approach.

Key words: syntactic analysis, parsing, Czech, parser evaluation

1 Introduction

Dependency parsing universally is nowadays very evolving field in natural
language processing, as dependency parsed data are further used for higher
layer analysis of natural language. Also, development of tagged treebanks en-
abled to analyse languages another way – using data-driven parsing. That is
why every improvement is proudly presented and various workshops with
NLP tasks are founded. One of the best-known is Conference on Computa-
tional Natural Language Learning (CoNLL, now part of Conference on Em-
pirical Methods in Natural Language Processing and Computational Natural
Language Learning, shortly EMNLP-CoNLL), where shared tasks are hold to
challenge the participants in natural language learning systems. Each team is
given the same training data, so then the evaluation results can be better com-
pared.

2 CoNNL shared task results for Czech language

Czech language dependency parsing was part of CoNLL shared task in 2006 [1],
2007 [2] and 2009 [3] and the aim of this paper is to describe the process of the
approach to get the results shown in Table 1, although it may not be possible to
achieve the exact accuracy, as it is covered later in the chapter.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2012, pp. 15–22, 2012. c○ Tribun EU 2012



16 Lucia Kocincová

Table 1. Results presented in CoNNL shared tasks.

best accuracy in year Labeled Accuracy Unlabeled Accuracy
2006 80.18 87.30
2007 80.19 86.28
2009 80.38 (not tested)

MaltParser (2006) 78.42 84.80
MST Parser (2006) 80.18 87.30

2.1 Reasons why results may not be reproduced exactly

At the beginning of the research, I was determined that I should simulate all
conditions that were depicted in conference papers but after further study of
various materials, my determination changed. There were decisive reasons that
cause the fact that my results may, or precisely, can not be the same as gained
in CoNNL tasks:

– different scoring metrics were used (e.g. punctuation was not counting)
– versions of parsers were not stated
– different training and/or evaluation data (e.g. old version of corpora) may

be used1

– different data format was used in 2009

In addition, I decided to use the latest versions of parsers because of the
fact, that trained models from old versions are no longer runnable under the
new ones. Therefore, old version models could be counterproductive if parsing
data for later applications, such identified in section 7.

3 MaltParser

MaltParser is a complex system for statistical dependency parsing developed
by Johan Hall, Jens Nilsson and Joakim Nivre at Växjö University and Uppsala
University in Sweden. Using MaltParser, an induced model can be generated
from corpus and then this model can be used to parse new data [4].

Latest version 1.7.2 was released on 25th September 2012 and is distributed
under open source licence2. The system is being developed in Java from version
1.0.0.

MaltParser’s specification can be divided into three parts3:

– Parsing algorithm: is defined by a transition system which derives depen-
dency trees, together with an oracle that is used for reconstruction of each
valid transition sequence for dependency structures. Together, there are
seven deterministic parsing algorithms:

1 due to licence conditions, they are not available online
2 full specification can be found at http://www.maltparser.org/license.html
3 complete list of features with their options can be found at http://www.maltparser.
org/userguide.html



Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks 17

∙ Nivre’s algorithm: is a linear-time algorithm for projective dependency
structures that can be run in two modes, either arc-eager (nivreeager)
or arc-standard (nivrestandard).

∙ Stack algorithm: are a group of three different algorithms: for projective
(stackproj) and non-projective trees (stackeager, stacklazy)

∙ Covington’s algorithm: is a quadratic-time algorithm for unrestricted
dependency structures which modes can be restricted to projective
structures (covproj) or non-projective (covnonproj) structures.

The last two parsing algorithms available in parser are:
∙ Planar algorithm: is another linear-time algorithm but for planar de-

pendency structures (ones that do not contain any crossing links)
∙ 2-Planar algorithm: also linear-time algorithm but can parse 2-planar

dependency structures (ones whose links may be crossed following a
specific rule)

After varying parser algorithms, especially first ones mentioned above,
Lazy Stack algorithm carried out best accuracies with both types of learning
packages.

– Learning algorithm: parser includes two machine learning packages –
LIBSVM, a type of support vector machines with kernels, and LIBLINEAR,
a type of various linear classifiers learner.
I tried various experiments with both packages to search which one gives
best results in meaning of time, memory use and accuracy. As can be seen
in Table 3, LIBSVM attained best accuracy and learning time was nearly 73
hours.

– Feature model: is an external XML file that specifies features of partially
built dependency structure together with main data structures in the parser
configuration. Default model, which depends on combination of machine
learning package and parsing algorithm, can be also used.
I experimented with a few feature models, either build in or obtained
by MaltOptimizer4. The best performance in my experiment was accom-
plished by one made with MaltOptimizer.

For achieving state-of-the-art results, optimization of MaltParser is neces-
sary. It is a non-trivial task because not only machine learning algorithm needs
to be correctly configured but also various parsers adjustments require setup -
I used splitting functionality for speeding up training and parsing time in case
of LIBSVM (split column was CPOSTAG, split structure was Stack[0] and split
threshold 1000). In addition, each learning algorithm has options itself that can
be enabled [7].

Hardware issues when using MaltParser mainly depend on which learning
algorithm is chosen – both can give state-of-art accuracy but in case of
LIBSVM, less memory is required, whereas LIBLINEAR is much more faster
than LIBSVM (for training and also for parsing, ranging from 2–5 hours for
LIBLINEAR and 8–72 hours for LIBSVM).

4 MaltOptimizer is a free available tool for better and easier optimization of MaltParser,
online at http://nil.fdi.ucm.es/maltoptimizer/



18 Lucia Kocincová

4 MSTParser

MSTParser is a non-projective dependency parser based on searching maxi-
mum spanning trees over directed graphs and is being developed by Jason
Baldrige and Ryan McDonald.

Parser from latest versions supports CoNNL format but it distinguishes
in some minor extent when comparing the input data format which accepts
MaltParser. The system can parse data in its own MST format which is much
more simpler than CoNNL:

w1 w2 w3 ... wn – n words of a sentence
p1 p2 p3 ... pn – POS tags for each word
l1 l2 l3 ... ln – labels of the incoming edge to each word
d1 d2 d3 ... dn – position of each words parent
Each sentence in the format is represented by first three or all four lines,

where each data is tab spaced and whole sentences are space separated.
Optimization of MSTParser includes options such as number of iteration

epochs for training, specifying type of structures for setting parsing algorithm
(either projective or non-projective), denoting order of features and option
if punctuation should be included in Hamming loss calculation. In newer
versions, it is possible to add confidence scores per-edge that mark the parser’s
confidence in correctness of a particular edge.

While experimenting, I also tried out configuration stated in distribution of
MSTParser, but I achieved best accuracy using value 3 for training-k5 and using
more memory than stated to avoid errors caused by running out of memory.

Latest version 0.5.0 was released on 23th January 2012 and the whole
system, developed in Java, is distributed under Apache License V2.06.

Hardware issues with MSTParser are bound with sufficient memory while
training a model, more specifically, the parser need to get a specification of how
much heap space can be taken – I used about 15GB of memory while creating
forest from training file with 1 503 739 tokens.

5 Data

5.1 Training and evaluation data

For training and evaluation purposes, The Prague Dependency Treebank 2.0
(PDT 2.0) was used. The newer version was chosen, because of the fact, that
last two mentioned CoNNL tasks based the training on it. Moreover, updated
version is free of various errors, such as spelling mistakes and faults on
morfological and analytical layer [6].

5 as stated in documentation, the k value is for non-projective structures only approxi-
mate

6 definition available at http://www.apache.org/licenses/LICENSE-2.0.html



Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks 19

I used data anotated on analytical layer, which can be described with
following numbers7:

overall train data dtest data etest data
sentences 87 913 68 495 (77.9 %) 9 270 (10.5 %) 10 148 (11.5 %)

tokens 1 503 739 1 171 191 (77.9 %) 158 962 (10.6 %) 173 586 (11.5 %)

For training numerous models, strictly only train part of the DPT 2.0 was
used, so the rest of it – development test (dtest) and evaluation test (etest), was
kept as unseen data. The data were manually disambiguated.

Before running the parsers, the format of the data has to be firstly changed
to the CoNNL format in which a sentence consists of ten columns where each is
tab separated (overview of the column and data meaning can be seen in Table
2) and individual sentences are separated by a blank line.

Table 2. CoNLL format preciselly described

Column # Name Definition
1 ID Token counter (starting at 1 for each new sentence)
2 FORM Word form or punctuation symbol
3 LEMMA Lemma of word form or an underscore if not available
4 CPOSTAG Coarse-grained part-of-speech tag
5 POSTAG Fine-grained part-of-speech tag or identical to the coarse-

grained part-of-speech tag if not available
6 FEATS Unordered set of syntactic and/or morphological features

separated by a vertical bar
7 HEAD Head of the current token, which is either a value of ID or

zero (0) – there may be multiple tokens with an ID of zero
8 DEPREL Dependency relation to the HEAD – the dependency relation

may be meaningfull or simply ’ROOT’
9 PHEAD Projective head of current token, which is either a value of ID

or zero (0)
10 PDEPREL Dependency relation to the PHEAD

5.2 Evaluation metrics

For evaluation, a script was written following basic metrics that shows real
accuracy:

UA =
correcthead

allhead

7 exhausting and precise description of PDT 2.0 can be found at
http://ufal.mff.cuni.cz/pdt2.0/doc/pdt-guide/en/html/ch03.html



20 Lucia Kocincová

LA =
correcthead AND correctlabel

all

Where Unlabeled accuracy (UA) is the ratio between correctly determined
head column (correcthead) and all heads (allhead) and Labeled accuracy (LA) is
the result of correctly determined head column AND correctly determined label
column (correctlabel) at the same row over all rows in evaluation data.

6 Results

I can bring some relevant results that show the approach of obtaining the
results of CoNNL shared tasks is completed. Table 3 presents selected various
combinations of learning and parsing algorithms with results for each accuracy,
labeled and unlabeled achieved on dtest. Parsing algorithms in italics cover
non-projective dependency structures.
In my experiment, I managed to successfully reproduce MaltParser results –
I achieved even higher score in both metrics, labeled and unlabeled accuracy.
However, results with MSTParser were not accomplished, as shows Table 4.

Table 3. Accuracy achieved with MaltParser on dtest so far

learning alg. parsing alg. Unlabeled accuracy Labeled Accuracy
LIBLINEAR nivrestandard 70.62 64.73

covproj 71.43 80.13
stackproj 79.67 73.99
covnonproj 80.58 74.95
stackeager 82.54 77.14
stacklazy 83.17 77.74

LIBSVM nivreeager 83.21 78.42
nivrestandard 81.51 76.37
stackproj 83.00 77.47
stacklazy 85.02 80.05

Table 4. Accuracy achieved with MSTParser on dtest

Unlabeled accuracy Labeled Accuracy
77.73 69.19
83.01 75.34
83.04 75.39



Reproducing Czech Syntactic Parsing Results Published in CoNLL Tasks 21

7 Further experiments and practical applications

Further experiments will follow this attempt by turning the parsers for even
better performance as recently, higher accuracy (about 2% higher in meaning
of LA and 1% of meaning of UA) was published with MaltParser [8] and MST-
Parser [9].
The aim of the approach was not only to get the results but it is far more prac-
tical. Systems with trained models that got the best accuracy will be used for
parsing corpora that will be further utilized for application in SketchEngine8

which is a corpus query system used by various people, including lexicogra-
phers, computer linguists and researchers.

Acknowledgments

This work has been partly supported by the Ministry of the Interior of CR
within the project VF20102014003 and by the Czech Science Foundation under
the project P401/10/0792.

References

1. Buchholz, S., Marsi E.:CoNLL-X Shared Task on Multilingual Dependency Parsing,
In: Proceedings of the Tenth Conference on Computational Natural Language
Learning, pp. 149–164 (2006), published: Stroudsburg, PA, USA, online at
http://dl.acm.org/citation.cfm?id=1596276.1596305

2. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.,: The
CoNLL 2007 Shared Task on Dependency Parsing, In: Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, published: Association for
Computational Linguistics, Prague, Czech Republic, pp. 915–932 (2007), online at
http://www.aclweb.org/anthology/D/D07/D07-1096

3. Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Martí, M. A., Marquez, L.,
Meyers, A., Nivre, J., Padó, S., Štepánek, J., Straňák, P., Surdeanu, M., Xue, N.,
Zhang, Y.: The CoNLL-2009 shared task: Syntactic and semantic dependencies in
multiple languages. In Proceedings of the Thirteenth Conference on Computational
Natural Language Learning: Shared Task, pp. 1-18 (2009)

4. Nivre, J., Hall, J., Nilsson, J.: MaltParser: A data-driven parser-generator for
dependency parsing, In: Proceedings of LREC-2006, pp. 2216–2219 (2006)

5. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing
using spanning tree algorithms, In: Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language
Processing, pp. 523–530 (2005)

6. Hajič, J.: Complex Corpus Annotation: The Prague Dependency Treebank,
published: Jazykovedný ústav L’. Štúra, SAV, Bratislava, Slovakia, 2004

7. Nivre, J., Hall, J.: A Quick Guide to MaltParser Optimization, online at
http://maltparser.org/guides/opt/quick-opt.pdf

8 http://sketchengine.co.uk/



22 Lucia Kocincová

8. Nivre, J. : Non-Projective Dependency Parsing in Expected Linear Time. In:
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the
AFNLP, pp. 351-359. Association for Computational Linguistics, Suntec, Singapore.
(2009)

9. Novák, V., Žabokrtský Z.: Feature Engineering in Maximum Spanning Tree
Dependency Parser. In: Proceedings of the 10th International Conference on Text,
Speech and Dialogue. Západočeská univerzita, Plzeň, Czechia. Springer-Verlag
Berlin Heidelberg, LNCS 4629. (2007)


