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Abstract. The goal of this paper is to introduce a deductive system
for Tichý’s Transparent Intensional Logic (TIL). Tichý defined a sequent
calculus for pre-1988 TIL, that is TIL based on the simple theory of types.
Thus we first briefly recapitulate the rules of this simple-type calculus.
Then we describe the adjustments of the calculus so that it be applicable
to hyperintensions within the ramified hierarchy of types. TIL operates
with a single procedural semantics for all kinds of logical-semantic
context, be it extensional, intensional or hyperintensional. We show that
operating in a hyperintensional context is far from being technically
trivial. Yet it is feasible. To this end we introduce a substitution method
that operates on hyperintensions. The syntax of TIL is the typed lambda
calculus. Its semantics is based on a procedural redefinition of, inter
alia, functional abstraction and application. The only two non-standard
features are a hyperintension (called Trivialization) that presents objects,
including hyperintensions, and a four-place substitution function (called
Sub) defined over hyperintensions.
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1 Foundations of TIL

From the formal point of view, TIL is a hyperintensional, partial typed λ-
calculus. Thus the syntax of TIL is Church’s (higher-order) typed λ-calculus,
but with the all-important difference that the syntax has been assigned a
procedural (as opposed to denotational) semantics, according to which a
linguistic sense is an abstract procedure detailing how to arrive at an object of a
particular logical type. TIL constructions are such procedures. Thus, abstraction
transforms into the molecular procedure of forming a function, application into
the molecular procedure of applying a function to an argument, and variables
into atomic procedures for arriving at their assigned values.

There are two kinds of constructions, atomic and compound (molecular).
Atomic constructions (Variables and Trivializations) do not contain any other
constituent but themselves; they specify objects (of any type) on which com-
pound constructions operate. The variables x, y, p, q, . . . , construct objects de-
pendently on a valuation; they v-construct. The Trivialisation of an object X (of
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any type, even a construction), in symbols 0X, constructs simply X without
the mediation of any other construction. Compound constructions, which con-
sist of other constituents as well, are Composition and Closure. Composition [F
A1. . . An] is the operation of functional application. It v-constructs the value of
the function f (valuation-, or v-, –constructed by F) at a tuple – argument A
(v-constructed by A1, . . . , An), if the function f is defined at A, otherwise the
Composition is v-improper, i.e., it fails to v-construct anything.3 Closure [λx1. . . xn
X] spells out the instruction to v-construct a function by abstracting over the
values of the variables x1,. . . ,xn in the ordinary manner of the λ-calculi. Finally,
higher-order constructions can be used twice over as constituents of compos-
ite constructions. This is achieved by a fifth construction called Double Execu-
tion, 2X, that behaves as follows: If X v-constructs a construction X′, and X′

v-constructs an entity Y, then 2X v-constructs Y; otherwise 2X is v-improper,
failing as it does to v-construct anything.

TIL constructions, as well as the entities they construct, all receive a type.
The formal ontology of TIL is bi-dimensional; one dimension is made up of con-
structions, the other dimension encompasses non-constructions. On the ground
level of the type hierarchy, there are non-constructional entities unstructured
from the algorithmic point of view belonging to a type of order 1. Given a so-
called epistemic (or objectual) base of atomic types ( o-truth values, ι-individuals, τ-
time moments / real numbers, ω-possible worlds), the induction rule for form-
ing functional types is applied: where α, β1,. . . ,βn are types of order 1, the set
of partial mappings from β1 ×. . .×βn to α, denoted ‘(αβ1. . . βn)’, is a type of or-
der 1 as well.4 Constructions that construct entities of order 1 are constructions of
order 1. They belong to a type of order 2, denoted ‘*1’. The type *1 together with
atomic types of order 1 serves as a base for the induction rule: any collection
of partial mappings, type (αβ1. . . βn), involving *1 in their domain or range is a
type of order 2. Constructions belonging to a type *2 that identify entities of or-
der 1 or 2, and partial mappings involving such constructions, belong to a type
of order 3. And so on ad infinitum.

The principle of hyperintensional individuation would slot in between
Church’s Alternatives (0) and (1) as Alternative (3/4), in that α-conversion and
η-conversion together with a restricted principle of β-conversion determine the
procedural individuation of hyperintensions we are operating with.

Laying out the required semantics requires a fair amount of footwork.
Once this is in place, however, all that remains is filling in the nitty-gritty
details of extensional rules such as quantifying-into hyperintensional contexts
and substitution of identicals. The devil is in the detail, as ever, and defining

3 We treat functions as partial mappings, i.e., set-theoretical objects, unlike the construc-
tions of functions.

4 TIL is an open-ended system. The above epistemic base {o, ι, τ, ω}was chosen, because
it is apt for natural-language analysis, but the choice of base depends on the area and
language to be analysed. For instance, possible worlds and times are out of place in
case of mathematics, and the base might consist of, e.g., o and ν, where ν is the type
of natural numbers.



Deduction System for TIL-2010 35

extensional rules of inference for hyperintensional contexts is far from being
technically trivial. But it is feasible, which we are going to show in the
rest of the paper. When defining extensional rules for operating in (hyper-
)intensional contexts we encounter two main problems, namely the problem
of substitution of identicals (Leibniz) and existential generalization. A common
idea is that extensional (etc.) contexts are those that validate quantifying-in
and substation of identicals. And conversely, if a context resists some of these
rules, it is deemed to be in violation of one or more of the laws of extensional
logic and as eluding full logical analysis. What we are saying is that also
intensional and hyperintensional contexts may be quantified into, but that the
feasibility of doing so presupposes that it be done within an extensional logic
of hyperintensional contexts.

2 Tichý’s sequent calculus

Tichý proposed a solution of the substitution and existential generalization
problem in his (1982, 1986) and defined a sequent calculus for the pre-1988
TIL, that is for extensional and intensional contexts. The solution is restricted
to the so-called linguistic constructions of the form λwλt[C1C2 . . . Cm] or
λwλt[λx1 . . . xmC].

2.1 Substitution and existential generalization

a) Substitution. a = b; C(a/x)⊢C(b/x)
This rule seems to be invalid in intensional contexts. For instance, the following
argument is obviously invalid:

The President of ČR is the husband of Livie.
Miloš Zeman wants to be the President of ČR.
Miloš Zeman wants to be the husband of Livie.

b) Existential generalization. C(a/x)⊢ ∃xC(x)
Again, in intensional contexts this rule seems to be invalid. For instance, the
following argument is obviously invalid:

Miloš Zeman wants to be the President of ČR.
The President of ČR exists.

Ad a) Tichý defines in (1986) hospitality for substitution. In principle, there are
four cases. If a variable z is (1,1) hospitable, then the construction of the form
[Xwt] is substitutable for z. That is, z occurs in an extensional (de re) context.
If a variable z is (1,0) hospitable, then the construction of the form [X w] is
substitutable for z. That is, z occurs in an intensional (de dicto) context with
respect to time t. If a variable z is (0,1) hospitable, then the construction of the
form [X t] is substitutable for z. That is, z occurs in an intensional (de dicto)
context with respect to a world w. Finally, if a variable z is (0,0) hospitable,
then the construction of the form X is substitutable for z. That is, z occurs in an
intensional (de dicto) context with respect to both t and w.
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Ad b) Exposure and existential generalization. Let x be (1,1)-hospitable, D(k, l)
substitutable for x in C. Then the following rule is valid:

C(D(k, l)/x) ⊢ λwλt∃x C(x)

Example. λwλt [Ekonomwt PCRwt] ⊢ λwλt∃x[Ekonomwt x]; (Ekonom/(oι)τω;
PCR/ιτω; x →v ι.)

2.2 Sequent calculus

Basic notions we need are these.
Match is a pair a : C, where a, C → α and a is an atomic construction. A

match a:C is satisfied by a valuation v, if a and C v-construct the same object;
match :C is satisfied by v, if C is v-improper; matches a:C # b:C are incompatible,
if a, b construct different objects; matches a:C # :C are incompatible.

Sequent is a tuple of the form a1:C1, . . . , am:Cm → b:D, for which we use a
generic notation Φ → Ψ; A sequent Φ → Ψ is valid if each valuation satisfying
Φ satisfies also Ψ;

Next we define rules preserving validity of sequents.
Structural rules.

1. ‖ Φ → Ψ, if Ψ ∈ Φ (trivial sequent)
2. Φ → Ψ ‖ Φs → Ψ, if Φ ⊆ Φs (redundant match)
3. Φ, ϑ → Ψ; Φ → ϑ ‖ Φ → Ψ (simplification)
4. ‖ Φ → y:y (trivial match)
5. Φ → ϑ1; Φ → ϑ2 ‖ Φ → Ψ, if ϑ1 and ϑ2 are incompatible
6. Φ, :ϑ → Ψ; Φ, y:ϑ → Ψ ‖ Φ → Ψ(y is not free in ...)

Application rules.

7. a-instance (modus ponens):

Φ → y:[FX1. . . Xm], Φ, f :F, x1:X1,. . . ,xm:Xm → Ψ ‖ Φ → Ψ, ( f , xi, different
variables, free in Φ, Ψ, F, Xi)

8. a-substitution:
(i) Φ → y:[FX1. . . Xm], Φ → x1:X1,. . . ,Φ → xm:Xm ‖ Φ → y:[Fx1. . . xm]
(ii) Φ → y:[Fx1. . . xm]; Φ → x1:X1,. . . , Φ → xm:Xm ‖ Φ → y:[FX1. . . Xm]

9. extensionality:

Φ, y:[ f x1. . . xm] → y:[gx1. . . xm]; Φ, y:[gx1. . . xm] → y:[ f x1. . . xm] ‖ Φ → f :g
(y, x1,. . . ,xm are different variables that are not free in Φ, f , g.)

λ-rules.

10. Φ, f :λx1. . . xmY → Ψ ‖ Φ → Ψ( f is not free in Φ, Y,Ψ)
11. β-reduction:

Φ → y:[[λx1. . . xmY] X1. . . Xm] ‖
Φ → y:Y(X1. . . Xm/x1. . . xm); (Xi is substitutable for xi)

12. β-expansion:
Φ → x1:X1;. . . ; Φ → xm:Xm; Φ → y:Y(X1. . . Xm/x1. . . xm) ‖
Φ → y:[[λx1. . . xmY] X1. . . Xm]
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3 Generalization for TIL 2010

Our goal is to generalize the calculus so that it involves ramified theory of
types, all kinds of constructions, existential generalization to any contexts and
substitution of identicals in any kind of context. To this end we first specify the
free kinds of context.5

3.1 Three kinds of context

Constructions are full-fledged objects that can be not only used to construct an
object (if any) but also serve themselves as input/output objects on which other
constructions (of a higher-order) operate. Thus we have:

Hyperintensional context: the sort of context in which a construction is not
used to v-construct an object. Instead, the construction itself is an argument of
another function; the construction is just mentioned.

Example. “Charles is solving the equation 1 + x = 3”. When solving the
equation, Charles wants to find out which set (here a singleton) is constructed
by the Closure λx[0= [0+ 01 x] 03]. Hence this Closure must occur hyper-
intensionally, becuase Charles is related to the Closure itself rather than its
product, a particular set. Otherwise the seeker would be immediately a finder
and Charle’s solving would be a pointless activity. The analysis comes down to:

λwλt[0Solvewt
0Charles 0[λx[0= [0+ 01 x] 03]]].

Intensional context: the sort of context in which a construction C is used to
v-construct a function f but not a particular value of f ; moreover, C does not
occur within another hyperintensional context.

Example. “Charles wants to be The President of Finland”. Charles is re-
lated to the office itself rather than to its occupier, if any. Thus the Closure
λwλt[0President_of wt

0Finland] must occur intensionally, because it is not used
to v-construct the holder of the office (particular individual, if any). The sen-
tence is assigned as its analysis the construction

λwλt[0Want_to_bewt
0Charles λwλt[0President_ofwt

0Finland]].

Extensional context: the sort of context in which a construction C of a function
f is used to construct a particular value of f at a given argument, and C does
not occur within another intensional or hyperintensional context.

Example. “The President of Finland is watching TV”. The analysis of this
sentence comes down to the Closure

λwλt[0Watchwt λwλt[0President_ofwt
0Finland]wt

0TV].

The meaning of ‘the President of Finland’ occurs here with de re supposition,
i.e. extensionally.

5 For exact definitions see [5, §2.6] and also [2, Chapter 11].
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3.2 Extensional calculus of hyperintensions

First we specify the rules of existential generalization and substitution rules
for all kinds of context and for any constructions. In order to operate in hy-
perintensional context we need to introduce a four-place substitution function,
Sub/(*n *n *n*n), defined over hyperintensions. When applid to constructions
C1, C2 and C3 the function returns as its value the construction D that is the
result of correctly substituting C1 for C2 into C3.

Let F/(αβ); a/α. First we specify the rules for existential generalisation.6

a) extensional context.
Let an occurrence of the Composition [. . . [0F 0a]. . . ] be extensional and let it

v-construct the truth-value T. Then the following rule is valid:

[. . . [0F 0a] . . . ] ⊢ ∃x[. . . [0Fx] . . . ]; x →v α

Example. „Pope is wise.“ |= „Somebody is wise“.

λwλt[0Wisewt
0Popewt] |= λwλt∃x[0Wisewt x];

b) intensional context.
Let [0F 0a] occur intensionally in [. . . λy [ . . . [0F 0a] . . . ]] that v-constructs T.

Then the following rule is valid:

[. . . λy[. . . [0F 0a] . . . ]] ⊢ ∃ f [. . . λy[. . . [ f 0a] . . . ]]; f →v (αβ)

Example. „b believes that Pope is wise“. |= „There is an office such that b
believes that its holder is wise“.

λwλt[0Believewt
0b λwλt[0Wisewt

0Popewt]] |=
λwλt∃ f [0Believewt

0b λwλt[0Wisewt fwt]];

c) hyperintensional context.
Let [0F 0a] occur hyperintensionally in a construction [. . . 0[ . . . [0F 0a] . . . ]] that

v-constructs T. Then the following rule is truth-preserving:

[. . . 0[. . . [0F 0a] . . . ]] ⊢ ∃c 2[0Sub c 00F 0[. . . 0[. . . [0F 0a] . . . ]]];
c →v *n; 2c →v (αβ)

Example. „b believes* that Pope is wise.“ |= „There is a concept of an office
such that b believes* that the holder of the office is wise.“

λwλt[0Believe*wt
0b 0[λwλt[0Wisewt

0Popewt]] |=
λwλt∃c[0Believe*wt

0b [0Sub c 00Pope 0[λwλt[0Wisewt
0Popewt]]]];

(Believe*/(oι*n)τω : hyperpropositional attitude; c →v *n; 2c →v ιτω.)

6 For details see [1].
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Second, here are the rules for substitution (Leibniz).

a) In an extensional context substitution of v-congruent constructions is valid.
b) In an intensional context (modalities, notional attitudes, . . . ) substitution of

equivalent (but not only v-congruent) constructions is valid.
c) In a hyperintensional context (propositional attitudes, mathematical sen-

tences, . . . ) substitution of procedurally isomorphic (but not only equiva-
lent) constructions is valid.

Third, we must specify how to manage partial functions, that is composition-
ality and non-existence. If a function F has no-value at an argument a (value
gap) then the Composition [0F 0a] is v-improper, and so is any construction C oc-
curring extensionally and containing [0F 0a] as a constituent; partiality is strictly
propagated up:

[. . . [ . . . [0F 0a] . . . ] . . . ] is v-improper until the context is raised up to hyper/in-
tensional level:

intensional context : λx. . . [. . . [ . . . [0F 0a] . . . ] . . . ] is v-proper
hyperintensional context: 0[. . . [ . . . [0F 0a] . . . ] . . . ] is v-proper

The rules of sequent calculus remain as specified by Tichý with one important
exception. Tichý’s λ-rules involve β-reduction ‘by name’. This rule is validity
preserving, but we need a stronger rule that would guarantee equivalency
between redex and reduct in the sense that both either v-construct the same
object or both are v-improper. Moreover, β-reduction ‘by name’ can yield a loss
of analytic information.7

β-reduction ‘by name’ in the sequent calculus:
Φ → y:[[λx1. . . xmY] X1. . . Xm] ‖ Φ → y:Y(X1. . . Xm/x1. . . xm); (Xi is

substitutable for xi)
In logic of partial functions the rule of transformation [[λx1. . . xmY]

X1. . . Xm] ⊢Y(X1 . . . Xm/x1 . . . xm) is not equivalent, because the left-hand side
can be v-improper while the right-hand side v-proper by constructing a degen-
erated function that is undefined for all its arguments. To illustrate the loss of
analytic information, consider two redexes [λx[0+ x 01] 03] and [λy[0+ 03 y] 01].
They both β-reduce to [0+ 03 01]. In the resulting Composition we lost the track
of which function has been applied to which argument. As a solution we pro-
pose the rule of β-reduction by value that is valid and applicable in any context.
Let xi →v αi be mutually distinct variables and let Di →v αi(1 ≤ i ≤ m) be con-
structions. Then the following rule is valid:

[[λx1. . . xmY]D1. . . Dm] ⊢ 2[0Sub [0Trα1D1]
0x1 . . . [0Sub [0Trαm Dm]

0xm
0Y]]

Example. “John loves his own wife. So does the Mayor of Ostrava.”
λwλt [λx [0Lovewt x [0Wife_of wt x]] 0John] =βv

λwλt 2[0Sub 00John 0x 0[0Lovewt x [0Wife_of wt x]]]

7 For details see [3].
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λwλt [so_doeswt
0MOwt] →

λwλt 2[0Sub 0[λwλtλx[0Lovewt x[0Wife_of wt x]]] 0so_does 0[so_doeswt
0MOwt]] =βv

λwλt [λx [0Lovewt x [0Wife_of wt x]] 0MOwt] =βv

λwλt 2[0Sub [0Tr 00MOwt] 0x 0[0Lovewt x [0Wife_of wt x]]].

One can easily check that in all these construction whether reduced or non-
reduced the track of the property of loving one’s own wife is being kept. This
property is constructed by the Closure λwλtλx [0Lovewt x [0Wife_of wt x]]. When
applied to John it does not turn into the property of loving John’s wife. And the
same property is substituted for the variable so_does into the second sentence.
Thus we can easily infer that John and the Mayor of Ostrava share the property
of loving their own wives.

4 Conclusion

We described generalization of Tichý’s sequent calculus to the calculus for TIL
2010. The generalization concerns these issues. First, the extensional rules of
existential generalization and substitution of identicals were generalized so that
to be valid in any context, including intensional and hyperintensional ones.
Second, we showed that the sequent calculus remains to be the calculus for TIL
based on the ramified hierarchy of types with one important exception, which
is the rule of β-reduction. We specified a generally valid rule of β-reduction ‘by
value’ that does not yield a loss of analytic information about which function
has been applied to which argument. No doubt that these are valuable results.

Yet some open problems and questions remain. Among them there are in
particular the question on completeness of the calculus and the problem of its
implementation.
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