
Practical Web Crawling for Text Corpora
Work in Progress

Vít Suchomel1 and Jan Pomikálek1,2

1 Natural Language Processing Centre
Faculty of Informatics, Masaryk University, Brno

{xsuchom2, xpomikal}@fi.muni.cz

nlp.fi.muni.cz

2 Lexical Computing Ltd.
jan.pomikalek@sketchengine.co.uk

Abstract. SpiderLing—a web spider for linguistics—is new software for
creating text corpora from the web, which we present in this article. Many
documents on the web only contain material which is not useful for text
corpora, such as lists of links, lists of products, and other kind of text not
comprised of full sentences. In fact such pages represent the vast majority
of the web. Therefore, by doing unrestricted web crawls, we typically
download a lot of data which gets filtered out during post-processing.
This makes the process of web corpus collection inefficient. The aim
of our work is to focus the crawling on the text rich parts of the web
and maximize the number of words in the final corpus per downloaded
megabyte. We present our preliminary results from creating Web corpora
of texts in Czech and Tajik.

Key words: Crawler, web crawling, corpus, web corpus, text corpus

1 Introduction

Text corpora have a wide range of applications in linguistics. The source of data
for corpora which has become very popular in the recent years is the web. A
web crawler is a computer program traversing web pages and downloading
documents. Due to the enormous size of the web an important measure of
the quality of a crawler is its speed – the number of bytes downloaded per
time unit. However, often it also matters which bytes we are downloading.
In the context of web corpora, an even more important measure of quality is
the number of words in the final corpus retrieved per time unit. Therefore, in
this context the quality of a crawler depends on the implemented traversing
algorithm.

We have experimented with using third party software for obtaining text
documents from the web. Following the example of other researchers [1], we
have used Heritrix crawler1 and downloaded documents for the language in

1 http://crawler.archive.org/

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2011, pp. 97–108, 2011. c○ Tribun EU 2011

98 Suchomel, Pomikálek

interest by restricting the crawl to national web domains of the countries where
the language is widely used (e.g. .cz for Czech). Though we managed to
compile corpora of up to 3 billion words in this way, we were not satisfied
with the fact that we need to keep the crawler running for several weeks and
download terabytes of data in order to retrieve a reasonable amount of text.
It turned out that most downloaded documents are discarded during post-
processing since they contain only material with little or no running text.

In order to reduce the amount of unwanted downloaded content, we
decided to create a custom web crawler which actively looks for text rich
resources and avoids websites containing only material not suitable for text
corpora. Our hope was that by avoiding the unwanted content we can not only
save bandwidth but also shorten the time required for building a web corpus
of a given size.

2 Analysis of previous work

We were interested to know how much data we download in vain when using
Heritrix and if the sources which should be avoided can be easily identified.
In order to get that information we analyzed the data of a billion word corpus
of European Portuguese downloaded from the .pt domain with Heritrix. For
each downloaded web page we computed its yield rate as

yield rate =
f inal data

downloaded data

where final data is the number of bytes in the text which the page contributed to
the final corpus and downloaded data is simply the size of the page in bytes (i.e.
the number of bytes which had to be downloaded). Many web pages have a
zero yield rate, mostly because they get rejected by a language classifier or they
only contain junk or they only contain text duplicate to previously retrieved
text.

We grouped the data by web domains and computed a yield rate for each
domain as the average yield rate of the contained web pages. We visualized this
on a scatterplot which is displayed in Fig. 1. Each domain is represented by a
single point in the graph.

It can be seen that the differences among domains are enormous. For
example, each of the points in the lower right corner of the graph represents a
domain from which we downloaded more than 1 GB of data, but it only yielded
around 1 kB of text. At the same time, there are domains which yielded more
than 100 MB of text (an amount higher by 5 orders of magnitude) from a similar
amount of downloaded data. These domains are positioned in the upper right
corner of the graph.

Next, we selected a set of yield rate thresholds and computed for each
threshold the number of domains with a higher yield rate and the sum of
downloaded and final data in these domains. The results can be found in
Table 1.

Practical Web Crawling for Text Corpora 99

103 104 105 106 107 108 109 1010 1011

Downloaded data size (bytes)

102

103

104

105

106

107

108

109

Fi
n
a
l
d
a
ta

 s
iz

e
 (

b
y
te

s)

yield rate = 0.1
yield rate = 0.01
yield rate = 0.001

Fig. 1. Web domains yield rate for a Heritrix crawl on .pt.

100 Suchomel, Pomikálek

Table 1. Sums of downloaded and final data size for all domains above given
the yield rate threshold.

yield rate total total
threshold domains downl data final data

none 51645 1288.87 GB 4.91 GB
0 31024 1181.56 GB 4.91 GB

0.0001 29580 705.07 GB 4.90 GB
0.0002 28710 619.44 GB 4.89 GB
0.0004 27460 513.86 GB 4.86 GB
0.0008 25956 407.30 GB 4.80 GB
0.0016 24380 307.27 GB 4.68 GB
0.0032 22325 214.18 GB 4.47 GB
0.0064 19463 142.38 GB 4.13 GB
0.0128 15624 85.69 GB 3.62 GB
0.0256 11277 45.05 GB 2.91 GB
0.0512 7003 18.61 GB 1.98 GB
0.1024 3577 5.45 GB 1.06 GB
0.2048 1346 1.76 GB 0.54 GB
0.4096 313 0.21 GB 0.1 GB

It is easy to see that as the yield rate threshold increases the size of the
downloaded data drops quickly whereas there is only a fairly small loss in
the final data. This suggests that by avoiding the domains with low yield rate
a web crawler could save a lot of bandwidth (and time) without making the
final corpus significantly smaller. For instance if only domains with a yield rate
above 0.0128 were crawled, the amount of downloaded data would be reduced
from 1289 GB to 87 GB (to less than 7%) while the size of the final data would
only drop from 4.81 GB to 3.62 GB (73.7%). This is of course only a hypothetical
situation, since in practice one would need to download at least several pages
from each domain in order to estimate its yield rate. Nevertheless, it is clear
that there is a lot of room for making the crawling for web corpora much more
efficient.

One could argue that a segmentation by domains is too coarse-grained since
a single domain may contain multiple websites with both high and low yield
rates. While we fully agree, we believe that identifying more fine-grained sets
of web pages, such as websites, introduces further complications and we leave
that for future work.

3 SpiderLing

We came to the conclusion that the easiest way of implementing our very
specific requirements on web crawling is to create a custom crawler from
scratch. We selected Python as our programming language to support rapid
development. In order to make debugging easier we avoided a multi-threaded
design. Instead, we use asynchronous communication for downloading data

Practical Web Crawling for Text Corpora 101

from multiple servers at the same time – a simple solution which scales up
well (we can keep up to 5000 simultaneously open connections without any
problems).

3.1 Improving yield rate

Our primary aim is to identify high-yielding domains and to avoid low-
yielding ones. At the same time we want to make sure that we do not download
all the data only from a few top-yielding domains so that we achieve a
reasonable diversity of the obtained texts.

We collect information about the current yield rate of each domain as we
are crawling the web. If the yield rate drops below a certain threshold we
blacklist the domain and do not download any further data from it. We define a
minimum amount of data which must be retrieved from each domain before it
can be blacklisted. Currently the used limit is 8 web pages or 512 kB, whichever
is a higher amount of data. The yield rate threshold is dynamic and increases as
more pages are downloaded from the domain. This ensures that sooner or later
all domains get blacklisted, which prevents overrepresentation of data from a
single domain. Nevertheless, low-yielding domains are blacklisted sooner and
thus the average yield rate increases.

The yield rate threshold for a domain is computed using the following
function:

t(n) = 0.01 ·
(
log10 (n)− 1

)

where n is the number of documents downloaded from the domain. The
function is based partly on the authors’ intuition and partly on the results of
initial experiments. Table 2 contains a list of thresholds for various numbers of
downloaded documents.

Table 2. The yield rate threshold as a function of the number of downloaded
documents.

of documents yr threshold
10 0.00

100 0.01
1000 0.02

10000 0.03

We experimented with various parameters of the yield rate threshold
function. Fig. 2 shows how the average yield rate changes in time with different
yield rate threshold functions. All these experiments have been performed with
Czech as the target language. It can be seen that stricter threshold functions
result in higher average yield rate. However, too high thresholds have a
negative impact on the crawling speed (see section 3.5). It is therefore necessary
to make a reasonable compromise.

102 Suchomel, Pomikálek

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time (hours)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

av
er

ag
e

yi
el

d
ra

te
No constraints
t(n) = 0.02 · (log7(n)− 1)

t(n) = 0.015 · (log10(n)− 1) (less strict)

Fig. 2. Average yield rate in time for various yield rate threshold functions.

3.2 Removing junk and duplicates

We use jusText2 [3]—a heuristic based boilerplate removal tool—to remove con-
tent such as navigation links, advertisements, headers and footers from down-
loaded web pages. Only paragraphs containing full sentences are preserved.

Duplicate documents are removed at two levels: (i) original form (text
+ HTML), and (ii) clean text as produced by jusText. Two correspondent
checksums are computed for each web page and stored in memory. Documents
with previously seen checksums are discarded. As a post-processing step, we
also remove near-duplicates using onion3.

We currently do not filter unwanted web content such as link farms and
machine generated texts. This may be a subject to further research. Note though
that some of such content (e.g. excerpts of Wikipedia articles on link farms) is
already reduced in our current processing pipeline as a positive side effect of
de-duplication.

3.3 Character encoding and language detection

We need to detect the character encoding of each downloaded document in
order to be able to display its text correctly and/or to unify the encoding
of all documents, e.g. by converting to UTF-8. Though for most web pages
the character encoding may be determined from the meta tags or from HTTP
headers, the information is not always available and not always correct and

2 http://code.google.com/p/justext/
3 http://code.google.com/p/onion/

Practical Web Crawling for Text Corpora 103

in general cannot be relied upon. Therefore, we detect the encoding from the
contained text by using chared4.

Language detection is another problem which has to be addressed since we
are typically building a web corpus for a particular language and want to avoid
any texts in other languages. Unfortunately, it is difficult to detect a language
of a text without identifying its character encoding first and vice versa. This is
a typical chicken and egg problem. We use a simple trick here. We perform the
character encoding detection first, assuming the input is in our target language.
If the assumption is not correct it is very likely that the input gets rejected by
the language filter in the next step anyway and thus it does not matter if the
encoding detections fails.

Language filtering is performed at two levels. (i) jusText—our boilerplate
removal tool—uses a list of the most frequent words in the language for
identifying paragraphs containing grammatical text. The rationale is that the
most frequent words are typically function words and a grammatical text
should contain a certain proportion of these words. This filtering has a positive
side effect of rejecting texts in other languages. (ii) We build a histogram of
triples of characters on a sample text in the target language and compare the
histogram of the text of each downloaded document with the model. This is
done using the Trigram class created by Douglas Bagnall5. We use a similarity
threshold of 0.5.

Both applied language filtering methods tend to accept texts in similar
languages (e.g. Slovak texts when the target language is Czech). Nevertheless,
this has not been a major problem so far. When creating a Czech corpus, only
a small amount of Slovak has been included and we managed to identify and
remove these texts during post-processing.

3.4 Starting URLs

A large set of starting URLs is needed for the crawler to quickly start retrieving
the data from many domains in parallel. We use Corpus Factory [2] for getting a
list of starting URLs for the target language. The tool compiles a list of medium
frequency words in the language by using texts from Wikipedia. These words
are then randomly combined into tuples of 3 to 5 and each tuple is used as a
query to a search engine (we currently use bing6). As a result we get a list of
URLs which are likely to contain documents in our target language.

3.5 Crawling speed

The maximum crawling speed we have achieved in our experiment was ca.
12 MB/s. However, we observe that the speed tends to decrease as the crawling
progresses. Since we typically start from a large set of seed URLs, we have

4 http://code.google.com/p/chared/
5
http://code.activestate.com/recipes/326576-language-detection-using-character-trigrams/

6 http://www.bing.com/

104 Suchomel, Pomikálek

enough distinct domains to download from in parallel at the beginning and
thus the initial crawling speed is good. However, as the crawling continues
currently processed domains get blacklisted faster than new high-yielding
domains are discovered. This reduces the number of domains available for
download and thus limits the crawling speed.

Fig. 3 and Fig. 4 show how the crawling speed changes in time. The speed is
measured as the amount of raw HTML and the amount of clean text retrieved
per time unit. The data originates from two web crawls – for Czech and
Tajik. For Tajik, the available online resources are very scarce which affects the
crawling speed significantly.

3.6 Crawling constraints

A web crawler should abide by the Robots Exclusion Standard7. SpiderLing
uses a third party Robot Exclusion Rules Parser8 which implements the up-to-
date (2008) version of the standard better than the Python built-in library. The
used parser also supports several non-standard but frequently used robots.txt
directives.

A crawler should not overuse web servers by querying too often. Our
crawler implements both per web domain and per IP address limits and by
default makes a maximum of 12 queries per minute and 10 queries per second
respectively.

3.7 Checkpoints

SpiderLing supports periodical saving of all important in-memory data (visited
domains, queued URLs, document checksums) to file system. It is possible to
resume crawling from a saved state in case of a failure (e.g. due to a bug in the
code or a server dropout). The state is saved in a human readable form and
allows manual inspection for debugging purposes.

4 Results

4.1 Yield rate

By applying yield rate thresholds on domains we managed to reduce down-
loading data which is of no use for text corpora and increased the overall av-
erage yield rate. Fig. 5 contains the same kind of scatterplot as displayed in
Fig. 1, this time on the data downloaded by SpiderLing with Czech as a target
language. This is a significant improvement over the previous graph. For low-
yielding domains only up to 1 MB of data is downloaded and high amounts of
data are only retrieved from high-yielding sources. Table 3 contains a summary
of the results of this web crawler run.

7 http://www.robotstxt.org/
8 http://nikitathespider.com/python/rerp/

Practical Web Crawling for Text Corpora 105

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
time (hours)

1

2

3

4

5

6
M

B
of

ra
w

H
TM

L
da

ta
pe

rs
ec

on
d

Czech
Tajik

Fig. 3. Download speed in time in terms of downloaded raw HTML data.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
time (hours)

0

200

400

600

800

1000

M
B

of
cl

ea
n

te
xt

pe
rh

ou
r

Czech
Tajik

Fig. 4. Download speed in time in terms of downloaded clean texts.

Table 3. Results of crawling Czech web with SpiderLing.

downloaded documents 15,525,554
downloaded data size 515,580 MB
final data size 30,522 MB
yield rate 5.92 %

106 Suchomel, Pomikálek

103 104 105 106 107 108 109 1010 1011

Downloaded data size (bytes)

102

103

104

105

106

107

108

109

Fi
n
a
l
d
a
ta

 s
iz

e
 (

b
y
te

s)

yield rate = 0.1
yield rate = 0.01
yield rate = 0.001

Fig. 5. Web domains yield rate for a SpiderLing crawl on Czech web.

Practical Web Crawling for Text Corpora 107

4.2 Created corpora

So far we have used SpiderLing to create two corpora. During the development
of the crawler we downloaded a total of ca. 4 TB Czech web pages in a
number of web crawler runs. This amounts to ca. 5 billion tokens after all post-
processing steps, including de-duplication with onion. We merged the corpus
with a ca. 2 billion word Czech web corpus we have collected previously by
using Heritrix. Since the two corpora overlapped to a high extent, the size of
the final Czech web corpus after de-duplication is 5.8 billion tokens.

As a next exercise we ran SpiderLing on Tajik, partly to support the work
of a visiting fellow researcher and partly to find out how the crawler will deal
with scarce online resources. We started the crawl from 2570 seed URLs (from
475 distinct domains) collected with Corpus Factory. Over 3 days the crawler
downloaded 9.5 GB of HTML data which yielded a 35 million tokens corpus
after all post-processing.

5 Future work

The primary goal of our future work is to test the crawler on other languages
and create further large web corpora. We believe that crawling speed might be
less of a problem for languages where vast online text resources are available
(e.g. English or Spanish). Nevertheless, we also want to invest more effort into
optimizing the crawling constraints so that a higher crawling speed can be
achieved even for scarcer resources.

Other plans for the future include analyzing the topics and genres of the
downloaded texts and eventually balancing the downloaded content in this
respect.

6 Conclusion

We presented SpiderLing, a web crawler for text corpora. We have shown that
the crawler can effectively avoid web data not suitable for text corpora and
significantly improve the yield rate of the downloaded content. The crawler has
already been successfully applied for creating a major part of a large (5.8 billion
tokens) Czech web corpus. We also managed to create a 35 million tokens web
corpus of Tajik by using SpiderLing. Though this is only a smallish corpus, we
consider it a promising achievement since online Tajik texts are scarce.

Acknowledgements The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 248307 (PRESEMT project), from the Ministry
of Education of CR within the Center of basic research LC536 and from the
Czech Science Foundation under the project P401/10/0792.

108 Suchomel, Pomikálek

References

1. M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta. The wacky wide web:
A collection of very large linguistically processed web-crawled corpora. Language
Resources and Evaluation, 43(3):209–226, 2009.

2. A. Kilgarriff, S. Reddy, J. Pomikálek, and A. PVS. A corpus factory for many
languages. Proc. LREC, Malta, 2010.

3. J. Pomikálek. Removing Boilerplate and Duplicate Content from Web Corpora. PhD thesis,
Masaryk University, Brno, 2011.

