
Deductive Reasoning using TIL

Martina Číhalová, Nikola Ciprich, Marie Duží, Tomáš Frydrych, and
Marek Menšík

VŠB-Technical University Ostrava
17. listopadu 15, 708 33 Ostrava, Czech Republic

m.tina.cihal@gmail.com, nikola.ciprich@linuxbox.cz, marie.duzi@vsb.cz,
frydrych.t@gmail.com, mensikm@gmail.com

Abstract. Transparent Intensional Logic (TIL) is a highly expressive logical
system apt for the logical analysis of natural language. It operates with
a single procedural semantics for all kinds of logical-semantic context,
whether extensional, intensional or hyper-intensional, while adhering to
the compositionality principle throughout. The reason why we vote for a
rich procedural semantics is this. A coarse-grained analysis of assumptions
yields paradoxes and puzzles, while an expressive formal system such
as TIL makes it possible to build an inference machine that neither over-
infers (which yields paradoxes) nor under-infers (which leads to the lack
of knowledge). From the formal point of view, TIL is a hyperintensional,
partial, typed lambda calculus. By way of examples we illustrate how TIL
deals with particular ‘puzzles’ in a smooth way while adhering to Leibniz’s
law of substitution of identicals and to the principle of compositionality.

Key words: TIL; deductive reasoning; 𝒯 IL-Script language; inference machine

1 Introduction
The way we understand the enterprise of logical analysis of natural language in
TIL is selective. The analysis leaves aside pragmatic features of language, but
makes all the logically salient features explicit and logically tractable. Yet the
very name of our theory, ‘Transparent Intensional Logic’, is likely to strike one
as being an oxymoron, like ‘roaring silence’. How can there possibly be a logic
that is intensional and at the same time transparent? Isn’t any intensional logic
such that it fails to heed various laws of extensional logic, such as referential
transparency, substitution of identicals, and compositionality? Certainly yes, if
‘intensional’ is synonymous with ‘non-extensional’. But ‘intensional’ may also
mean—and this is the notion of intensionality germane to TIL—that the logic
in question comes with a rich ontology of entities and the means to logically
manipulate these entities. Due to its rich ontology of entities organized in a bi-
dimensional that is ramified hierarchy of types TIL flouts none of the principles
of extensional logic and is, insofar, an extensional logic.1

1 Portions of this paper draw on material presented in [7], in particular Sections 2.6 and 2.7.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2009, pp. 25–38, 2009. c○ Masaryk University, Brno 2009



26 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

TIL operates with a single procedural semantics for all kinds of logical-semantic
context, whether extensional, intensional or hyper-intensional. It means that
it explicates the meaning of an expression as an abstract procedure encoded
by the expression. Such procedures are rigorously defined as TIL constructions
and we assign them to expressions as their context-invariant meanings. From
the formal point of view, TIL is a hyper-intensional, partial, typed λ-calculus.
Hyper-intensional, because the terms of the TIL formal language in which
constructions are encoded are interpreted as procedures (generalized algorithms)
rather than their products; partial, because the primitive notion of TIL is a
function understood as a partial mapping that assigns to each element of its
domain at most one element of its range; and typed, because all the entities of
TIL ontology, including constructions, receive a type.

Yet such an expressive system is often characterized as being logically
or computationally intractable. In our opinion, it is not the language in
which a problem is encoded what can be intractable, but the problem itself.
Problems are easy or difficult to solve. For instance, it is a well known fact
that though the problem of logical validity in propositional logic is decidable,
it is not computationally tractable. In Stephen Cook’s famous [3] the theorem
is proved that the satisfiability problem is NP-complete, and the tautology
problem is co-NP-complete. This means that by a commonly accepted conjecture,
these problems are regarded as computationally intractable. And it is also a
well-known fact that as a consequence of Gödel’s incompleteness theorem,
the problem of logical validity in the first-order predicate logic is not even
algorithmically decidable. Does it mean that we should reduce our reasoning
to computationally tractable sub-systems of propositional logic? Certainly
not. Though a great expressive power is inversely proportional to an easy
implementation of a suitable deductive system, we need to know what should
be solved prior to seeking plausible methods of the problem in question solving.

Moreover, there is another strong reason to vote for an expressive, fine-
grained semantics. A coarse-grained analysis of assumptions yields paradoxes
and puzzles. On the other hand, a rich formal system such as TIL makes it
possible to build an inference machine that in principle neither over-infers
(which yields paradoxes) nor under-infers (which leads to the lack of knowledge).
However, there are two problems connected with TIL deduction system.

First, since the system is hyper-intensional, which means that the meaning of
an expression is a construction specified by the analyzed expression, rather
than the product of the construction denoted by the expression, we must
strictly distinguish between constructions and their products. This amounts
for distinguishing a context in which a construction is used to produce an entity
(if any), and the hyper-intensional context in which the construction itself is only
mentioned as an object of predication. And if the construction is used, we must
distinguish the context in which it is used intensionally and the context in which
it is used extensionally. If the former, then the so constructed function is an object
of predication; and if the latter, the value of the constructed function is an object



Deductive Reasoning using TIL 27

of predication. Only then can we specify rules of deduction for extensional,
intensional as well as hyper-intensional context.

The second problem is partiality. The primitive notion of TIL is function rather
than relation. And it is a brute fact that we need to work with properly partial
functions, i.e. functions that are undefined at some arguments. The problem
crops up when a properly partial function is applied to an argument at which the
function does not return any value. Traditional formal lambda-calculi avoid this
problem by simply excluding non-denoting terms as meaningless. Yet, this is not
a plausible solution for the semantics of natural language. Though, for instance,
the present King of France does not exist (the office is vacant) this does not mean
that the term ‘King of France’ is meaningless. If it were, we could not reasonably
and truly assert that the King of France does not exist. Similarly mathematicians
had to know the meaning of ‘the greatest prime’ prior to proving that there is no
greatest prime. Thus we cannot avoid application of a properly partial function
to an argument. Only we have to take into account that the operation can fail to
produce a product.2

The goal of the paper is not to introduce the TIL inference machine in full.
Instead, by way of examples, we illustrate how TIL deals with particular ‘puzzles’
in a smooth way while adhering to Leibniz’s law of substitution of identicals
and the principle of compositionality in all kinds of context. TIL constructions
are assigned to semantically unambiguous expressions as their context-invariant
meanings. What differs dependently on the context in which the analyzed
expression is used are logical operations applied to a meaning constituent rather
than the assigned meaning itself.

The paper is organized as follows. The next Section 2 presents basic principles
and definitions of TIL. In Section 3 we first characterize the three kinds of context
in which a construction can occur, and then we illustrate by examples the unique
way how TIL operates in these contexts. Concluding Section 4 sums up the
results and outlines further research.

2 TIL in brief

Since Frege’s pioneering paper [8] logicians and semanticists have striven to
define so-called structured meanings that would comply with the principles of
compositionality and universal referential transparency. Various adjustments
of Frege’s semantic schema have been proposed, shifting the entity named by
an expression from the extensional level of atomic (physical/abstract) objects
to the intensional level of abstract objects such as sets or functions/mappings.
Yet natural language is rich enough to generate expressions that talk neither
about extensional nor intensional objects. Propositional attitudes are notoriously
known as the hard cases that are neither extensional nor intensional, as Carnap

2 To this end we introduce a generally valid rule of β-reduction ‘by value’. The rule has been precisely defined in

[7], Section 2.6. Roughly, the idea resembles lazy evaluation of functional programming languages. We first

check whether the construction is proper and only then substitute the Trivialization of the constructed entity for

the formal parameter x. See also [4] where this substitution method is applied to anaphora pre-processing.



28 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

in [1] characterized them. It has become increasingly clear since the 1970s that
we need to individuate meanings more finely than by possible-world intensions,
and the need for hyperintensional semantics is now broadly recognised. Our
position is a plea for such a semantics, which takes expressions as encoding
algorithmically structured procedures producing extensional/intensional entities
(or lower-order procedures) as their products. This approach—which could be
characterized as being informed by an algorithmic or computational turn—has
been advocated by, for instance, Moschovakis in [10]. Yet much earlier, in the
early 1970s, Tichý introduced his notion of construction and developed the system
of Transparent Intensional Logic, as presented in [11] and [12].

Constructions, as well as the entities they construct, all receive a type. The
ontology of TIL is organized in an infinite, bi-dimensional hierarchy of types.
One dimension is made up of non-constructions, i.e., entities unstructured from
the algorithmic point of view. The other dimension of the type hierarchy is
made up of structured, higher-order constructions which construct lower-order
entities. Thus our definitions are inductive, and they proceed in three stages.
First, we define the simple types of order 1 comprising non-constructions. Then
we define constructions and, finally, the ramified hierarchy of types.

Definition 1 (Types of order 1) Let B be base, i.e., a collection of non-empty sets.
1. Every member of B is a type of order 1 over B.
2. Let α, β1, . . . , βm be types of order 1. Then the set (αβ1 . . . βm) of partial

functions with values in α and arguments in β1, . . . , βm, respectively, is
a type of order 1 over B.

3. Nothing is a type of order 1 over B unless it so follows from (1) and (2). ⊓⊔
The choice of the base depends on the area and language we happen to be
investigating. When investigating purely mathematical language, the base can
consist of, e.g., two atomic types; o, the type of truth-values, and v, the type of
natural numbers. When analyzing an ordinary natural language, we use the
epistemic base which is a collection of four atomic types, o, ι, τ, ω, where o= {T, F}
is the set of truth-values, ι is the universe of discourse (members: individuals), τ
is the set of real numbers (or of time moments) and ω is the logical space, the set
of possible worlds.

Definition 2 (intensions and extensions); (PWS) intensions are entities of type
(βω): mappings from possible worlds to some type β. The type β is frequently
the type of the chronology of α-objects, i.e., mapping of type (ατ). Thus α-
intensions are frequently functions of type ((ατ)ω), abbreviated as ‘ατω’.
Extensions are entities of a type α where α ̸= (βω) for any type β. ⊓⊔

Examples of frequently used intensions are: Propositions (denoted by declara-
tive sentences) are of type oτω ; properties of individuals (usually denoted by nouns
or intransitive verbs like ‘is a student’, ‘walks’) are of type (oι)τω ; binary relations-
in-intension between individuals are of type (oιι)τω;3 individual offices/roles (cf.
3 Since function rather than relation is a primitive notion of TIL, we model sets and relations by their

characteristic functions. Thus, for example, the set of prime numbers is a function of type (oτ) that associates

any number with T or F according as the given number is a prime.



Deductive Reasoning using TIL 29

Church’s individual concepts, usually denoted either by superlatives like ‘the
highest mountain’ or terms with built-in uniqueness, like ‘The President of the
USA’) are of type ιτω. Expressions which denote non-constant intensions (i.e.
functions that take different values in at least two world-time pairs) are empirical.

Quantifiers ∀α, ∃α, are extensions, viz. type-theoretically polymorphous
functions of type(s) (o(oα)) defined as follows: The universal quantifier ∀α is a
function that associates a class C of α-elements with T if C contains all elements
of the type α, otherwise with F. The existential quantifier ∃α is a function that
associates a class C of α-elements with T if C is a non-empty class, otherwise
with F. The singulariser Singα is a partial type-theoretically polymorphic function
of type(s) (α(oα)) that associates a class C with the only α-element of C if C is
a singleton, otherwise the function Singα is undefined. We will often use the
abbreviated notation ‘∀x A’, ‘∃x A’ and ‘ιx A’ instead of ‘[0∀αλx A]’, ‘[0∃αλx A]’,
‘[0Singαλx A]’, respectively, when no confusion can arise.

When claiming that constructions are algorithmically structured, we mean
the following. A construction C consists of one or more particular steps, or
constituents, that are to be individually executed in order to execute C. The objects
a construction operates on are not constituents of the construction. Just like the
constituents of a computer program are its sub-programs, so the constituents
of a construction are its sub-constructions. Thus on the lowest level of non-
constructions, the objects that constructions work on have to be supplied by
other (albeit trivial) constructions. The constructions themselves may occur
not only as constituents to be executed, but also as objects that still other
constructions operate on. Therefore, one should not conflate using constructions
as constituents of compound constructions and mentioning constructions that
enter as input/output objects into compound constructions. Mentioning is, in
principle, achieved by using atomic constructions. A construction C is atomic if it
does not contain any other construction as a used sub-construction (a ‘constituent’
of C) but C. There are two atomic constructions that supply entities (of any
type) on which compound constructions operate: Variables and Trivializations.
Compound constructions, which consist of other constituents than just themselves,
are Composition and Closure. Composition is the instruction to apply a function to
an argument in order to obtain its value (if any) at the argument. It is improper,
i.e., does not construct anything, if the function is not defined at the argument.
Closure is the instruction to construct a function by abstracting over variables in
the ordinary manner of the λ-calculi. Finally, higher-order constructions can be
used once or twice over as constituents of constructions. This is achieved by a
fifth and sixth construction called Execution and Double Execution, respectively.

Definition 3 (construction)

1. The Variable x is a construction that constructs an object O of the respective
type dependently on a valuation v; it v-constructs O.

2. Trivialization: Where X is an object whatsoever (an extension, an intension
or a construction), 0X is the construction of Trivialization. It constructs X
without any change.



30 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

3. The Composition [XY1 . . . Ym] is the following construction. If X v-constructs
a function f of a type (αβ1 . . . βm), and Y1, . . . , Ym v-construct enti-
ties B1, . . . , Bm of types β1, . . . , βm, respectively, then the Composition
[XY1 . . . Ym] v-constructs the value (an entity, if any, of type α) of f on the
tuple-argument ⟨B1, . . . , Bm⟩. Otherwise the Composition [XY1 . . . Ym] does
not v-construct anything and so is v-improper.

4. The Closure [λx1 . . . λxmY] is the following construction. Let x1, x2, . . . , xm
be pairwise distinct variables v-constructing entities of types β1, . . . , βm
and Y a construction v-constructing an α-entity. Then [λx1 . . . λxmY] is the
construction λ-Closure (or Closure). It v-constructs the following function
f /(αβ1 . . . βm). Let v(B1/x1, . . . , Bm/xm) be a valuation identical with v at
least up to assigning objects B1/β1, . . . , Bm/βm to variables x1, . . . , xm. If Y is
v(B1/x1, . . . , Bm/xm)-improper (see 3), then f is undefined on ⟨B1, . . . , Bm⟩.
Otherwise the value of f on ⟨B1, . . . , Bm⟩ is the α-entity v(B1/x1, . . . , Bm/xm)-
constructed by Y.

5. The Execution 1X is the construction that either v-constructs the entity v-
constructed by X or, if X v-constructs nothing, is v-improper.

6. The Double Execution 2X is the following construction. Let X be any entity;
the Double Execution 2X is v-improper (yielding nothing relative to v) if X
is not itself a construction, or if X does not v-construct a construction, or
if X v-constructs a v-improper construction. Otherwise, let X v-construct a
construction X′ and X′ v-construct an entity Y. Then 2X v-constructs Y.

7. Nothing is a construction, unless it so follows from (1) through (6). ⊓⊔
Notation and abbreviations:

– ‘X/α’ means that the object X is (a member) of type α;
– ‘X →v α’ means that the type of the object v-constructed by X is α. We use

‘X → α’ if what is v-constructed does not depend on a valuation v.
– We will standardly use the variables w→v ω and t→v τ;
– If C →v ατω, the frequently used Composition [[C w] t], the intensional

descent of the α-intension v-constructed by C, will be written as ‘Cwt’.
– When using constructions of truth-value functions, namely ∧ (conjunction),
∨ (disjunction) and ⊃ (implication) of type (ooo), and ¬ (negation) of type
(oo), we often omit Trivialisation and use infix notion.

– When using identity relations =α /(oαα), we often omit the superscript α
and use infix notation, whenever no confusion arises.

As mentioned above, constructions themselves are objects and thus also receive
a type. Only it cannot be a type of order 1, because a construction cannot be of
the same type as the object it constructs. Constructions that construct entities of
order 1 are constructions of order 1. They belong to a type of order 2, denoted by
‘?1’. This type ?1, together with atomic types of order 1, serves as the base for the
following induction rule: any collection of partial mappings, type (αβ1 . . . βn),
involving ?1 in their domain or range is a type of order 2. Constructions belonging
to the type ?2, which identify entities of order 1 or 2, and partial mappings
involving such constructions, belong to a type of order 3; and so on ad infinitum.



Deductive Reasoning using TIL 31

The definition of the ramified hierarchy of types decomposes into three parts.
First, simple types of order 1 were already defined by Definition 1. Second, we
define constructions of order n, and third, types of order n + 1.

Definition 4 (Ramified hierarchy of types) Let B be base.
T1 (types of order 1)–defined by Definition 1.
Cn (constructions of order n)

1. Let x be a variable ranging over a type of order n. Then x is a construction of
order n over B.

2. Let X be a member of a type of order n. Then 0X, 1X, 2X are constructions of
order n over B.

3. Let X, X1 . . . Xm(m > 0) be constructions of order n over B. Then
[XX1 . . . Xm] is a construction of order n over B.

4. Let x1 . . . xm, X(m > 0) be constructions of order n over B. Then
[λx1 . . . λxm X] is a construction of order n over B.

5. Nothing is a construction of order n over B unless it so follows from Cn
(1)-(4).

Tn+1 (types of order n + 1)
Let *n be the collection of all constructions of order n over B. Then

1. *n and every type of order n are types of order n + 1.
2. If 0 < m and α, β1, . . . , βm are types of order n + 1 over B, then (αβ1 . . . βm)

(see T1 2) is a type of order n + 1 over B.
3. Nothing is a type of order n + 1 over B unless it so follows from Tn+1 (1) and

(2). ⊓⊔

So much for the philosophy and basic definitions of TIL.

3 The outline of TIL calculus

In this section we deal with the deduction system based on TIL. We are not
going to define the calculus entirely, since it would be beyond the scope of this
paper. Instead we informally explain particular rules as they are valid in the
three kinds of context and illustrate them by examples.

3.1 Three kinds of context

As mentioned above, constructions are full-fledged objects that can be not only
used to construct an object (if any) but also serve themselves as input/output
objects on which other constructions (of a higher-order) operate. This is so,
because expressions of natural language, when used in a communicative act,
can be used in three different ways. True, expressions are always used to express
their meaning explicated in TIL as a construction. But when using an expression
E, its meaning C can occur with three different suppositions:



32 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

1. The meaning C is not used to identify an object about which something
is predicated; rather, C itself is an object of predication within another
expression E′ of which E is a sub-expression. We will say that the meaning
C (and thus also the expression E) occurs hyper-intensionally.

2. The meaning C is used to identify an object that is a function F (possibly a
0-ary one, which is a function without arguments). Now again there are two
possible suppositions:
(a) The function F itself is an object of predication; in this case we say that

the meaning C (and thus also the expression E) is used intensionally.
(b) The value of F is an object of predication; in this case we say that the

meaning C (and thus also the expression E) is used extensionally.

Note that the notions ‘intensionally’ and ‘extensionally’ are used here in a
broader sense than in possible-world semantics. Whenever confusion might
arise, we will explicitly say PWS-intension. Using medieval terminology, we
will also talk about de dicto and de re supposition, in case that a construction of a
PWS-intension occurs intensionally and extensionally, respectively.

Thus we must distinguish between the context of mentioning a construction
hyper-intensionally as an input/output object on which another construction
operates and using a construction as a constituent of another construction in two
different ways, either intensionally or extensionally. However, there is another
complication here. A higher context is dominant over a lower one. It means that
if a meaning C occurs extensionally as a constituent of another construction C′

which in turn occurs intensionally (as a constituent of some D), then C occurs in
C′ (as well as in D) intensionally. And if a meaning C is used extensionally or
intensionally as a constituent of another construction C′ which in turn occurs
hyper-intensionally (as mentioned in some D), then C occurs in C′ (as well as in
D) hyper-intensionally.

The three kinds of context are specified as follows4:

1. Hyperintensional context: the sort of context in which a construction is not
used to v-construct an object. Instead, the construction itself is an argument
of another function; the construction is just mentioned.
Examples: Consider the sentence “Charles is solving the equation 2+ x = 7”.
When Charles is looking for the solution of ‘2 + x = 7’, he is not looking for
the number 5. And though the solution of ‘2 + x = 7’ is the same as, e.g.,
of ‘13− x = 8’, it does not follow that Charles is solving the latter equation.
Thus the meaning of the solution of ‘2 + x = 7’ is only mentioned here. It
is predicated of this very meaning that Charles is striving to find the object
constructed by this meaning. When evaluating the truth-conditions of this
sentence, we do not solve the equation, it is Charles’ matter.
For another example, consider the sentence “Charles believes that the
President of Finland is elected directly by public but does not believe that the
Head of state of Finland is elected by public”. Suppose that ‘the President of

4 An exact definition is out of the scope of this paper. See, however, [7], in particular Chapters 2.6 and 2.7.



Deductive Reasoning using TIL 33

Finland’ and ‘the head of state of Finland’ denote one and the same office.5

Then if ‘the President of Finland’ and ‘the head of state of Finland’ were
used extensionally or intensionally, the sentence would be a contradiction.
Yet it is not. Thus both the expressions, or rather their meanings, occur here
hyper-intensionally.

2. Intensional context: the sort of context in which a construction C is used to
v-construct a function but not a particular value of the function, and C does
not occur within another hyperintensional context.
Example: “Sinus is a periodical function”. The object of predication is
here the entire function sinus rather than its particular value. Thus the
meaning of ‘sinus’ is used intensionally here, and the analysis comes down
to [0Periodical 0Sinus]; Periodical/(o(ττ)); Sinus/(ττ).
For a non-mathematical example, consider the sentence “The President of
Finland is elected for the period of six years”. The object of predication
is the office of the president, that is the function of type ιτω. The sentence
predicates of this office (rather than of its contingent holder, if any) that it has
the property of being eligible for the period of six years. The sentence is true
even if the office is vacant; its truth is established by the Finnish constitution.
Hence the meaning of ‘the President of Finland’ occurs here with de dicto
supposition.

3. Extensional context: the sort of context in which a construction C of a function
is used to construct a particular value of the function at a given argument,
and C does not occur within another intensional or hyperintensional context.
Example: “sin(π) = 0” expresses the Composition [[0Sinus 0π] = 00], where
0Sinus occurs extensionally; the Composition is used to construct the value
of the sinus function at the argument π of type τ.
For a non-mathematical example, consider the sentence “The President of
Finland is the first female holder of the office”. Now the property of being
the first female holder of the office is not predicated of the entire office, but
of its present holder, i.e. the value of type ι of the function of type ιτω . Hence
the meaning of ‘the President of Finland’ occurs here extensionally, with de
re supposition.

To avoid a misconception, we want to stress that the specification of particular
contexts in which a construction occurs, does not involve a reference shift or
even a meaning shift, as Frege proposed. Our analysis is anti-contextualistic. This
is to say that the meaning of an unambiguous expression is the same in all
the contexts. Indeed, why should the meaning of ‘the President of Finland’ as
used in the sentence “The President of Finland is a female” be different from
the meaning of this very same expression as used in “Charles believes that the
President of Finland is a female”? What is dependent on the context in which one
and the same meaning occurs is the way we logically manipulate the respective
construction. This we are going to demonstrate in the next section.

5 This is a simplification, because it is true that the President of Finland is the Head of state of Finland, but if

Finland were for instance a kingdom, then the head of state would be a king or a queen. Thus the Head of state

of Finland is a requisite of the presidential office. Yet this minor simplification is irrelevant here.



34 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

3.2 Substitution and Leibniz’s Law

The extensional, intensional and hyperintensional occurrences of constructions
were introduced in order to define valid inference rules for TIL in its capacity
as a hyperintensional logic of partial functions. Once the difference between
mentioning and using a construction, and the difference between using a
construction either intensionally or extensionally, have both been defined, the
specification of the rules is smooth sailing. They can be formulated as follows.

Improperness (non-existence). A construction C v-constructing an entity of a
type α can be v-improper only due to a constituent D occurring extensionally
in C. This is to say that improperness stems from using Composition, which
is the procedure of applying a function f to an argument; either f has a value
gap, or Composition C does not obtain an argument to operate on because
some of the constituents of C are v-improper. In this way partiality is strictly
propagated upwards.

Existence. If a construction C is v-proper then all its constituents Di occurring
extensionally are v-proper as well. In other words, the respective values of
the functions constructed by these constituents exist.

Leibniz’s law of substitution.
Extensional context. A collision-less replacement of v-congruent construc-

tions D, D′ in C is valid for extensionally occurring constituents; con-
structions D, D′ are v-congruent if they v-construct one and the same
entity.

Intensional context. A collision-less replacement of equivalent construc-
tions D, D′ in C is valid for all constituents of C; constructions D, D′ are
equivalent if they v-construct one and the same entity for all valuations v.

Hyper-intensional context. A collision-less replacement of procedurally
isomorphic constructions D, D′ in C is valid for all sub-constructions of
C; constructions D, D′ are procedurally isomorphic if they v-construct
one and the same entity for all valuations v in the same procedural way.
More precisely, procedural isomorphism is defined as the transitive
closure of α- and η-equivalence. For instance, the constructions 0Prime,
λx[0Prime x], λy[0Prime y], λz[λx[0Prime x] z], are procedurally isomor-
phic, while λx[[0Cardλy[0Divide y x]] = 02] is only equivalent to them;
it does construct the set of primes, but does so in a non-isomorphic
manner.

Moreover, for v-proper constituents occurring extensionally, the classical
extensional rules of inference (as for instance those of a sequent calculus) are
valid.

To illustrate the rules, we are now going to analyze some of the examples
adduced in the previous section.
Example 1 (hyper-intensional context) “Charles is solving the equation 2+ x = 7”.
As always, we begin with assigning types to the objects that receive mention in
the analyzed sentence: Charles/ι; Solve/(oι?n)τω; 2, 7/τ; x → τ. When solving
the equation, Charles wants to find out which set (here a singleton) is constructed



Deductive Reasoning using TIL 35

by the Closure λx[0= [0+ 02 x] 07]. Thus he is related to the Closure itself rather
than its product, a particular set. Otherwise the seeker would be immediately a
finder and Charles’ solving would be a pointless activity. The analysis comes
down to

λwλt[0Solvewt
0Charles 0[λx[0= [0+ 02 x]07]]]. (1)

Thus the following argument is invalid:
“Charles is solving the equation 2 + x = 7”

“The solution of 2 + x = 7 is equal to the solution of 13 - x = 8”
“Charles is solving the equation 13 - x = 8”

This is revealed by the analysis:
λwλt[0Solvewt

0Charles 0[λx[0= [0+ 02 x]07]]]
λx[0= [0+ 02 x]07] = λy[0= [0− 013 y]08]

λwλt[0Solvewt
0Charles 0[λy[0= [0− 013 y]08]]]

The construction [λx[0= [0+ 02 x] 07]] occurs in the first premise hyper-intensionally.
Thus a substitution salva veritate is valid here only for procedurally isomorphic
constructions. Yet the second premise guarantees only the equivalence of the two
Closures; they construct the same set of numbers, but in a non-isomorphic way.

On the other hand, the Trivialization 0[λx[0= [0+ 02 x] 07]] is a constituent
used in (1) intensionally. It can never be v-improper, and the following argument
is valid:

“Charles is solving the equation 2 + x = 7”
λwλt[0Solvewt

0Charles 0[λx[0= [0+ 02 x]07]]]
“There is something Charles is solving”

λwλt∃c[0Solvewt
0Charles c]

The variable c is ranging over ?1.
Proof. Let Proper/(o?n) be the class of constructions that are not v-improper
for any valuation v. Then in any world w at any time t the following steps are
truth-preserving:[0Solvewt

0Charles 0[λx[0= [0+ 02 x]07]]
]

assumption[0Properwt
0[λx[0= [0+ 02 x]07]]

]
the rule of improperness

∃c[0Solvewt
0Charles c] existential generalisation

Example 2 (intensional context) “Charles wants to be The President of Finland”.
Types. Charles/ι; Want_to_be/(oιιτω); President_o f /(ιι)τω; Finland/ι

λwλt[0Want_to_bewt
0Charles λwλt[0President_o fwt

0Finland]]. (2)
The Closure λwλt[0President_o fwt

0Finland] occurs intensionally, i.e. with de dicto
supposition, because it is not used in (2) to v-construct the holder of the office
(particular individual, if any). Thus the following argument is invalid:

“Charles wants to be the President of Finland”
“The President of Finland is the first female holder of the office”

“Charles wants to be the first female holder of the office”



36 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

The analysis reveals the invalidity of the argument:

λwλt[0Want_to_bewt
0Charles λwλt[0President_o fwt

0Finland]]
λwλt[0= λwλt[0President_o fwt

0Finland]wt[0Firstwt λx [[0Femalewt x] ∧ [0= x λwλt[0President_o fwt
0Finland]wt]]]

]

λwλt[0Want_to_bewt
0Charles

λwλt[0Firstwtλx [[0Femalewt x] ∧ [0= x λwλt[0President_o fwt
0Finland]wt]]]

Additional types: x → ι; Female/(oι)τω ; First/(ι(oι))τω : the function that selects
from the set of individuals the only individual that is the first one at a given
⟨w, t⟩ of evaluation.

The argument is obviously invalid, because λwλt[0President_o fwt
0Finland]

occurs in the first premise with supposition de dicto, i.e. intensionally, while
the second premise guarantees only v-congruence of this Closure with
λwλt[0Firstwtλx [[0Femalewt x] ∧ [0= x λwλt[0President_o fwt

0Finland]wt]]], i.e. a
contingent co-occupancy of the two offices, rather than equivalence needed for
a valid substitution.

Example 3 (extensional context) “The President of Finland is watching TV”.
The analysis of this sentence comes down to the Closure

λwλt[0Watchwt λwλt[0President_o fwt
0Finland]wt

0TV] (3)

Additional types: Watch/(oιι)τω ; TV/ι. The meaning of ‘the President of Finland’
occurs with de re supposition in (3), i.e. extensionally. Thus we can apply the
extensional rules that are also known as two principles de re. They are the Principle
of existential presupposition and the Substitutivity of co-referential expressions. The
following arguments are valid:
Argument 1:

“The President of Finland is watching TV”
“The President of Finland exists”

λwλt[0Watchwt λwλt[0President_o fwt
0Finland]wt

0TV]

λwλt[0Existwt λwλt[0President_o fwt
0Finland]]

Argument 2:
“The President of Finland is watching TV”

“The President of Finland is Tarja Halonen”
“Tarja Halonen is watching TV”

λwλt[0Watchwt λwλt[0President_o fwt
0Finland]wt

0TV]
λwλt[0= λwλt[0President_o fwt

0Finland]wt
0Halonen]

λwλt[0Watchwt
0Halonen 0TV]

Here are the proofs:
(Ad Argument 1) First, existence is here a property of an individual office rather
than of some non-existing individual, whatever that would mean. Thus we have
Exist/(oιτω)τω . To prove the validity of the argument, we define Exist/(oιτω)τω
as the property of an office of being occupied at a given world/time pair:

0Exist =o f λwλtλc[0∃λx[x = cwt]], i.e., [0Existwt c] =o [0∃λx[x = cwt]]



Deductive Reasoning using TIL 37

Types: ∃/(o(oι)): the class of non-empty classes of individuals; c→v ιτω ; x →v ι;
=o /(ooo): the identity of truth-values; =o f /(o(oιτω)τω(oιτω)τω): the identity
of individual-office properties.

Let =i /(oιι) be the identity of individuals, Empty/(o(oι)) the singleton
containing the empty set of individuals and Improper/(o?1)τω the property of
constructions of being v-improper in a given ⟨w, t⟩-pair, the other types as above.
Then in any ⟨w, t⟩ the following proof steps are truth-preserving:
[0Watchwt λwλt[0President_o fwt

0Finland]wt
0TV

]
assumption

¬[0Improperwt
0[[λwλt[0President_o fwt

0Finland]]wt]] def. of Composition
¬[0Empty λx[x =i [λwλt[0President_o fwt

0Finland]]wt]] obvious from the prev. step[0∃λx[x =i [λwλt[0President_o fwt
0Finland]]wt]

]
existential generalisation[0Existwt [λwλt[0President_o fwt

0Finland]]
]

by def of Exist

(Ad Argument 2) substitution:
[0Watchwt λwλt[0President_o fwt

0Finland]wt
0TV

]
assumption[0 = λwλt[0President_o fwt

0Finland]wt
0Halonen

]
assumption[0Watchwt

0Halonen 0TV
]

substitution of identicals

Note that if the President of Finland does not exist, then neither “The President
of Finland is watching TV” nor the negated “The President of Finland is not
watching TV” have any truth-value. This is due to compositionality and the
extensional rule for existence. In both sentences ‘the President of Finland’ occurs
extensionally. Thus if one of these sentences (either positive or negative one) is
True, the President of Finland exists. As a consequence, if the president does not
exist, then neither of these sentences is true. Hence, both sentences have no truth
value, which is just the Principle of exitential presupposition: the existence of the
president is not only entailed but also presupposed.6

4 Conclusion
Partiality, as we know all too well, is a complicating factor. Yet we are convinced
that logic should assist in unearthing the objective structures underlying the
expressions of a given language. In order to reflect ‘gaps in reality’ faithfully (i.e.,
to obtain a counterpart of Bolzano’s Gegenstandslosigkeit), TIL adopts properly
partial functions and improper constructions. In short, part of the task of a logician
must be to adequately model the semantic features of (fragments of) a given
language even at the cost of incurring technical complications. This explains why
we are not going to join the game of playing fast and loose with existing logical
symbols in order to define new ad hoc connectives and ‘entailment relations’ so
as to either preserve or invalidate this or that commonly accepted law. Instead,
we deploy methods that overcome these technical complications and are at the
same time in full accordance with the principles of TIL as outlined in this paper.

6 This is valid in case ‘the President of Finland’ is the topic of the sentence about which the property of watching

TV (focus) is predicated. Yet there is another reading with ‘TV’ occurring as the topic and ‘president of Finland’

occurring in the focus clause. Then the existence of the president is only entailed. For details on Topic-Focus

ambiguities see [6] and also [9].



38 Číhalová M., Ciprich N., Duží M., Frydrych T., Menšík M.

Yet the theoretical specification of particular rules is only the first step. When
making these features explicit we keep in mind an automatic deduction that
will make use of these rules. To this end we currently develop a computational
variant of TIL, the functional programming language 𝒯 IL-Script (see [2]). The
direction of further research is clear. We are going to continue the development
the 𝒯 IL-Script language in its full-fledged version equivalent to TIL calculus.

Acknowledgements. This research has been supported by the Grant Agency of
the Czech Republic, projects GACR 401/07/0451, ‘Semantization of Pragmatics’
and 401/09/H007 ‘Logical Foundations of Semantics’, and also by the internal
grant agency of FEECS VSB-TU Ostrava - IGA 22/2009, ‘Modeling, simulation
and verification of software processes’.

References

1. Carnap, R.: Meaning and Necessity. Chicago: Chicago University Press, 1974.
2. Ciprich, N., Duží, M. and Košinár, M.: The 𝒯 IL-Script language. In Information

modelling and Knowledge Bases XX, Y. Kiyoki, T. Tokuda, H. Jaakola, X. Chen, N.
Yoshida (eds.), Amsterdam: IOS Press, pp. 166–179, 2009.

3. Cook, S. A.: The Complexity of Theorem-Proving Procedures. In: STOC ’71:
Proceedings of the 3rd annual ACM symposium on Theory of computing. New
York, NY, USA, pp. 151–158, ACM Press, 1971.

4. Duží, M.: Semantic pre-processing of anaphoric references. In Proceedings RASLAN
2007, P. Sojka and A. Horák (eds.), Masaryk University Brno, pp. 43–56, 2007.

5. Duží, M.: Intensional logic and the irreducible contrast between de dicto and de re,
ProFil 5, pp. 1–34. 2004, Retrievable at http://profil.muni.cz/01_2004/duzi_de_
dicto_de_re.pdf

6. Duží, M.: Topic-Focus articulation from the semantic point of view. In Computational
Linguistics and Intelligent Text Processing, ed. A. Gelbukh, pp. 220–232, Springer, LNCS
5449, 2009.

7. Duží, M., Jespersen B., Materna P.: Procedural Semantics for Hyperintensional Logic;
Foundations and Applications of Transparent Intensional Logic. Series Logic, Epistemology
and the Unity of Science. Springer, Berlin (forthcoming).

8. Frege G., Über Sinn und Bedeutung, Zeitschrift für Philosophie und philosophische Kritik,
vol. 100, pp. 25–50, 1892.

9. Hajičová, E.: What we are talking about and what we are saying about it. In Computa-
tional Linguistics and Intelligent Text Processing, LNCS Springer Berlin/Heidelberg, vol.
4919, pp. 241–262, 2008.

10. Moschovakis, Y. N.: Sense and denotation as algorithm and value. In: J. Väänänen, J.
Oikkonen (eds.), Lecture Notes in Logic, vol. 2, Berlin: Springer, pp. 210–249, 1994.

11. Tichý, P. The Foundations of Frege’s Logic. Walter de Gruyter, Berlin-New York, 1988.
12. Tichý, P. (2004): Collected Papers in Logic and Philosophy, V. Svoboda, B. Jespersen,

C. Cheyne (eds.), Prague: Filosofia, Czech Academy of Sciences, and Dunedin:
University of Otago Press.


