
Yet Another Formalism for Morphological Paradigm

Marek Grac

Natural Language Processing Centre, Faculty of Informatics
Masaryk University, Brno

xgrac@fi.muni.cz

Abstract. Morphology is one of the few areas in the natural language
processing where computers are good enough. Different approaches lead
to different problems. For Slavonic languages rules and statistical methods
are commonly used. Rule based methods are more precise but tend to
fail when parsing unknown words. Hybrid technologies with statistical
methods helps to solve this problem. It is also possible to solve this problem
by extending existing rule-based resources. These resources can be used
also for other linguistic research. This paper presents new formalism which
is closer to human understanding of natural language morphology and its
application in extending morphological dictionary.

Key words: morphology; morphological analysis

1 Introduction

Morphology was first area in natural language processing reaching maturity.
Tokenization, splitting running text into tokens, is difficult problem for Arabic
or Chinese but not for Slavonic languages. Morphological analysis was first
real problem for them. Simple solutions suitable for English with its simple
morphological system shown to be ineffective for Slavonic languages. For them
morphological paradigm, contains information about lemma and possible word
forms, needs higher level of abstract formalism.

2 Suffix Based Formalism

Rule based system for Slavonic languages are popular and widely used (e.g. [1]).
These systems use different sets of grammatical tags and are not used for
different languages. Most of them use suffix grammar to model existing
paradigm. This approach is suitable for Slavonic languages because they use
mostly postfix morphology with limited prefix morphology (verb and adjection
negation ne, superlatives naj. Formalisms uses only few basic operations that
can be performed at the end of word e.g. add/remove character. Such simple
formalism helps us to create morphological analyzers that look simple and
can be very fast (tens of thousands analysis per second). Disadvantage of this
approach is that we have to define large number (hundreds) of patterns. In [2]
we can find several tricks how to partially reduce their numbers in particular
cases but it won’t help too much.

Petr Sojka, Aleš Horák (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2009, pp. 9–12, 2009. c○ Masaryk University, Brno 2009



10 Marek Grac

3 Linguists Defined Formalism

Morphology is interested not only for computer linguists but also for traditional
linguists. Our attempts to formalize patterns described in linguistics resources
ended with puzzled results. Authors of these books wrote them for readers with
their language experience, so explained patterns uses words like ’sometimes’ or
’mainly’. Ambiguity of these patterns is problem even for non-expert readers.
This formalism when one pattern is described on several pages is not suitable
for computers as we cannot parse them correctly. Main benefit of this approach
is that we ends in small amount of patterns which are distinguishable from each
other.

4 Yet Another Formalism

Our attempts to formalize knowledge in monographies about morphology
lead us to create formalism which will be closer to traditional patterns but still
unambiguous. In SBF we define pattern as a set of suffixes with tags. LDF extends
this because it tends to use semantic characteristics or etymology. Unfortunately
these information are not easily accessible for machine usage. We have found
that only suitable feature of LDF patterns for us is condition constraining lemma.
Usually lemma has to have defined suffix (this is covered by SBF, too) and after
removing this suffix, it is possible to generate new conditions for this form. For
Slovak and Czech language we found out that they belongs to these group:

– on N-th position is character X b, ch
– on N-th position is character which belongs to class X (e.g. soft consonant š,

long vowel á
– on N-th position ends long/short syllable domáci, cudzí

Using set of conditions from previous list can rapidly reduce number of
lemma which can potentionaly be part of pattern. Problems which does not have
to be solved in SBF arise. Some characters contain more then one letter (e.g. ch)
and others are specific for one languages (e.g. ř, dž). Also splitting word into
character can be ambiguous (e.g. viachlas does not contain character ch). Also
syllables can be different across languages. Splitting word into syllables is not a
trivial problem. For our purpose we don’t care about boundaries and we just
have to found core of syllable and decide if it is short or long.

Each pattern tries to describe every accepted word form for lemma. Such
word form can be divided in various ways. In SBF generation rules usually
contain of what should be removed and suffix which will be added. We are
following this simple method but generalize it a bit. Each word form consist
of prefix, base and suffix. Each pattern can define several bases so in pattern
generation we just point to them using identificators. Using several bases is based
to LR (also applied in Slovak morphological database [3]). As we want do remove
ambiguity, algorithm of creating base from lemma have to be disambiguate.



Yet Another Formalism for Morphological Paradigm 11

Algorithm for creating base can be part of lemma requirements and then
it apply only to lemma which successfully based requirerements. Or it can be
part of pattern directly if it will be applied to every lemma belonging to pattern.
We are aware that extensive usage of bases can result in having empty suffixes.
Usually for Czech or Slovak, we use one or two bases for nouns and up to five
of them for verbs. Those bases can be created by operations. Several of them
are language independent e.g. remove and add character on/to N-th position
(operations: chop and append). It is possible to create user defined operations
but it is not necessary in most of the cases.

Next part of pattern generation consists of rules. Each word form is defined
with its prefix, pointer to base and suffix. It is possible to generate several word
forms with same tag. Concatenating prefix, base and suffix does not have to
result in final word form. In some cases we want to polish it a bit. For Slovak we
want quite often to shorten last syllable if previous one is long e.g. domácí ->
domáci. Such filters can be applied directly to word form. Second possibility are
filters that are generally valid across language, they can be defined for language
itself and does not have to be mentioned in patterns e.g. in Slovak medved’ + e
-> medvede.

In some cases we want to add a special pattern to lemma. We distinguish
two such cases. First case is when we know that given word form can be used
as lemma with defined pattern. Example of such case in Slovak is generation of
deverbalism plávat’ -> plávanie (pattern vysvedčenie). Second case is different
because in some cases we want to use pattern of lemma. Such case is best shown
on pattern negation which adds prefix ne- and then copy existing pattern (we
will have just one negation for each PoS).

5 Langusta Framework

In project Langusta we attempted to write an implementation of previous
formalism. We have decided to use Java programming language and free BSD
license. Result of our work is framework which consist of language independent
parts which are inherited by language specific parts.

Defining new Slavonic language is very simple. We have to begin with
alphabet definition which contains all characters and classes to which they
belong. Second step is to modify general word to characters splitter to cover
cases when there is an ambiguity. After these two steps we are able to start
writing patterns. Usually after just few of them we will realize which operations
and filters will be usefull to write. They have to follow appropriate interface and
in the language definition we will add those Java objects to identificators used
in pattern definiton. This part usually takes few days. Last and usually the more
complex and time consuming part is to write pattern definition for flective parts
of speech.

We are in a process of creating set of morpholigical patterns but preliminary
results are promising. Our tool based on Trdlo framework allow us to work
very fast 200–300 lemma/hour because it shows expert only those patterns that



12 Marek Grac

are acceptable for given lemma. It means that even if we have around 50 verb
patterns for Slovak in usual case only 2 or 3 them are shown.

6 Conclusion

In this paper we presented a new approach for formalisation of morphological
pattern. Benefits of such approach where explained. Architecture of framework
Trdlo was described and preliminary results are promising. In the future we
would like to finish writing patterns for Slovak and Czech. Having such resource
for several languages can be very usefull for comparative linguists. After we
will annotate enough data we are going to try to use more automatic methods to
determine pattern according to data found in non-tagged corpora.

Acknowledgments This work has been partly supported by the Ministry of
Education of CR within the Center of basic research LC536 and in the National
Research Programme II project 2C06009.

References

1. Sedláček, R.: Morfologický analyzátor češtiny. Master’s thesis, FI MU, Brno (1999).
2. Garabik, R.: Levenshtein Edit Operations as a Base for a Morphology Analyzer.

Computer Treatment of Slavic and East European Languages. Ed. R. Garabík.
Bratislava: Veda (2005) 50–58.

3. Benko, V., Hašanová, J., Kostolanský, E.: Morfológia podstatných mien. Počítačové
spracovanie prirodzeného jazyka. Pedagogická fakulta UK, Bratislava (1998).


