Towards Czech Morphological Guesser

Pavel Smerk

Faculty of Informatics, Masaryk University
Botanicka 68a, CZ-602 00 Brno, Czech Republic
smerk@mail .muni.cz

Abstract. This paper presents a morphological guesser for Czech based
on data from Czech morphological analyzer ajka [1]. The idea behind
the presented concept lies in a presumption that the new (and therefore
unknown to the analyzer) words in a language behave quite regularly
and that a description of this regular behaviour can be extracted from the
existing data of the morphological analyzer. The paper describes both the
construction of guesser data and the architecture of the guesser itself.

1 Introduction

An obvious disadvantage of traditional morphological analyzers is the finite-
ness of their dictionaries. There is no way to catch all words of the particular
language in a dictionary of an analyzer, because new and new words continue
to appear in the language. Thus, almost allways there will be some words on
which the analyzer will not be able to return any information.

If we want to process even these words unrecognized by the analyzer,
we have two possibilities. Either to guess possible lemma (or lemmata) and
appropriate tags from the context of the word, or to guess it from the form of
the word, i. e. from its resemblance to some word known to the analyzer.

In this paper we describe the second of these two possible approaches. First
of all, a general idea will be introduced. In the next section, we describe the
algorithm for construction of the data as well as the architecture of the guesser
in section 4. At the end we make some remarks on possible future development
of a guesser.

2 General Idea

The Czech language has many inflectional and derivational paradigms (espe-
cially if we count every “exception” as a separate paradigm, as the morpho-
logical analyzer ajka does), but only a smaller part of them is synchronically
productive in the sense that there are appearing (or at least may appear) new
words in the language which belong to that productive paradigms.

For instance, word husa (“goose") has an own, separate paradigm, because
of a doublet in genitive plural, hus and husi. There is no other word with the
same inflectional paradigm and no chance that any such word could appear in

Petr Sojka, Ale§ Hordk (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2008, pp. 1-4, 2008. © Masaryk University, Brno 2008

2 Pavel Smerk

Czech. All new feminines which end with vocal -a will belong to the paradigm
Zena (“woman").

Of course, it is similar for the derivational relations. For instance, some older
adjectives with a meaning “made of material /substance" are created with suffix
-en(y), e. g. drevény (“wooden”). But nowadays this suffix is not productive and
this meaning is expressed by productive suffix -0v(7).

Obviously, the non-productive paradigms are quite useless for the guessing
the possible lemma and tags, or even more than that: these paradigms might
serve as an undesirable bias if we would not ignore them. Unfortunately, we
do not have the information, which paradigms are productive and which are
not.

As was said above, we may assume that all Czech words unrecognized by
the analyzer are regular, i. e. belong to some productive paradigm. Or, in other
words, that the words with irregular behaviour are either already known to
the analyzer or they are quite infrequent in real texts and thus irrelevant for
our task. Moreover, we may assume that absolute majority of the actually used
lexicon is covered by the dictionary of the analyzer, which means that there is
enough examples of all productive behaviour in that dictionary. Then we may
conclude that “productive” significantly correlates with “frequent in existing
data" and our goal will be to sort out the frequent behaviour from the analyzer’s
dictionary.

3 Construction of the Guesser Data

In this section, the algorithm of the guesser data construction will be described
in detail.

— First of all, we count numbers of lemmata for each paradigm from the
dictionary of Czech morphological analyzer ajka,

— then we pick out all lemmata (from that dictionary) which belong to any
paradigm which has at least 20 lemmata (this will reduce the number
of lemmata from 389,831 to 382,994, i.e. by 1.75%, but the number of
paradigms from 1,830 to 387, i. e. by 78.85 %),

— we let the morphology analyzer generate all word forms for each lemma
picked out in the previous step, if the lemma belongs to some of the
open POS categories (i. e. nouns, adjectives, verbs or adverbs — other POS
categories are closed, so we need not expect any new words which would
belong to them),

- moreover we discard all colloquial word forms, all negations and superla-
tives and all word forms of length 6 letters or less,

- each word form we turn into a triplet word form, lemma and tag in the
following form: akzefuo:ka:ek:ki1gMnSc2,kigMnSc4 where the akzefuo is
the reversed (letter by letter) word form oufezka, the next two strings ka
and ek specifies a lemma (one has to remove the first string from the end of
the word form and append the second string, i. e. lemma in the example is
outezek) and the last is a list of possible morphological tags,

Towards Czech Morphological Guesser 3

- we sort the triplets lexicographically (the actual sort order is not important),
— then we go through the list of triplets and collect information on possible
word forms’ ends of various length and corresponding lemmata and tags:

we use two arrays, both of length 10. The elements of the first array
represent letters from the end of the processed word form so that each
left “subarray” represents the end of the word form of the given length.
The elements of the second array are hashes, in which the keys are
triplets without the word form (e.g. ka:ek:k1gMnSc2,kigMnSc4) and
values indicates for how many word forms (from the list of triplets)
with the given end the analyzer returns this lemma and tag(s),

it would be difficult to describe the following steps in general, that is
why we illustrate it on example,

let us suppose that after the processing of the triplet
akzefuo:ka:ek:klgMnSc2,kigMnSc4, the content of the first array is

112|3/4|/5/6|7|8|9]|10
alklz|e|-|-]-|-]-]| -

(which means that the first hash from the second array stores possible
interpretations [lemma and tag(s)] of words which end with -a, the
second hash is information on words which end with -ka etc.),

and that the next two triplets are akzefyv:ka:ek:klgMnSc2,k1gMnSc4
and akzjaps:::k1gFnScl,

we assume that at least the first (or the last, in reversed string) three
letters represent the root of the word form, that is, none of these letters
are part of any derivational suffix of flectional ending and thus we
can (and should) ignore them. In addition, we assume, that eventual
combinations of suffixes and ending longer than 10 letters are not
interesting for the guesser,

it follows that in our example we ignore ou?, o7 and $pa and take only
the ends ezka @kze) and jzka @kzj),

for each of such ends we compare its letters with the letters in the first
array. We do it from the highest index (10) to the lowest (1). There are
three possibilities!:

* both positions are empty (“-” signs emptiness). We do nothing,

* both positions are nonempty, but equal. We take the rest of the
triplet (e. g. ka:ek:k1gMnSc2,k1gMnSc4) as a key in the correspond-
ing hash in the second array and increase the associated value,

* positions are different. We empty the corresponding hash and
replace the content of the array element with the letter from the end
of the word. Before emptying the hash, we store the information it
contains, but only if total sum of values exceeds 20 and at least one
value exceeds 10. In such case we generate a string by joining the
following data with some separator: given end of the word form,
total sum of values and for each key its value and the key itself.

“u oy

Mn fact, things are even a little bit more complicated.

4 Pavel Smerk

Moreover, all numbers, which we store in the generated string, has
to be subtracted from the corresponding values in all hashes with
lower index than the current hash has,

o back to our example: the word end akze (word form vyjfezka) is the same
as the letters in the first array, so we only update the first four hashes by
adding 1 to the value associated with key ka:ek:k1gMnSc2,k1gMnSc4.
But the next word end akzj (word form spajzka) differs at the fourth po-
sition. Therefore we empty the hash, generate something like akze 50
30:ka:ek:kigMnSc2,kigMnSc4 20:::klgFnScl (just an example, not
the real data) and put j into the fourth element of the first array,

- we sort the generated strings lexicographically, do some optimizations
(merge some very similar data etc.), strip the numbers, reverse the sort
order and the data for the guesser are done.

4 Guesser Architecture

The guesser itself is rather simple. During the start, it reads the data and
creates a regular expression from word ends and a hash, in which the keys
are the word ends and values are the information about possible lemmata
and tags. Words, which are not recognized by the morphological analyzer, are
reversed and their last three letters are cut off. The rest is matched against the
regular expression, the eventual match (which is always the longest possible
one, because of reversed sort order of the data) is found in the hash and the
corresponding value is sent to the output.

5 Future Development

The main problem of this approach is that it works well only for word forms
which have some derivational suffixes or inflectional endings, i.e. which are
integrated into the Czech language system. It will not success in guessing
indeclinable words such as expressions from other languages, foreign proper
names etc. It seems that proper handling of these words will require some
contextual information.

Acknowledgements. This work has been partly supported by the Academy
of Sciences of Czech Republic under the project 1ET200610406, by the Ministry
of Education of CR within the Center of Computational Linguistics LC536, by
the Czech Science Foundation under the project GA407/07/0679, and in the
National Research Programme II project 2C06009.

References

1. Radek Sedla¢ek and Pavel Smrz. 2001. A New Czech Morphological Analyser ajka.
In Proceedings of the 4™ International Conference TSD 2001. LNCS 2166, Springer-
Verlag, pp. 100-107.

