
Generating CNNs using Genetic Algorithm

Lev Martin Zachar

August 2020

1 Introduction

The goal of this project is to explore the usability of GA (Genetic Algorithm)
to generate CNN (Convolutional Neural Network) for image classification that
would work reasonably well on multiple datasets such as MNIST, FASHION-
MNIST, CIFAR-10 and CIFAR-100 (fine). One of the most popular approaches
to generating neural networks via genetic algorithm is it’s variation NEAT
(Neuro Evolution of Augmented Topologies) [SM02], which is an algorithm set
up to evolve minimal networks by initializing all networks with no hidden nodes.
Each individual in the initial population of GA consists of input nodes, output
nodes, and a series of connection genes between them. By itself, a network of
this kind may not necessarily work, but when combined with the idea of spe-
ciation proves to be a powerful idea in evolving minimal, yet high-performing
networks.

However, since NEAT leverages from evolving minimal networks (with no
hidden nodes) makes the algorithm unusable for generating CNNs due to the fact
that they need multiple hidden layers (convolutions). In the following chapters I
shall provide a short description of CNNs in the context of generating its layers,
various challenges to think of when implementing a GA to generate CNN and
propose own solution.

1.1 Convolutional networks

A CNN consists of input, hidden and output layers. The hidden layers of CNN
are mainly convolutional and pooling layers. Pooling layers are usually incorpo-
rated between two successive convolutional layers. The pooling layers reduce the
number of parameters and computation by down-sampling the representation.

For the purposes of this project, I have been working with image datasets
that often provided low-resolution images, lowest being 28x28 pixels and highest
32x32 pixels. This introduced a limitation on the number of hidden layers as
they reduce dimensions. The lower count of CNN layers complements the idea
of generating deepest possible networks for the data I am using, and at the same
time, not too deep that the network would become computationally unfeasible
- especially while training multiple species and generations. In order to reduce
compute time even further, a method called Early stopping was used.

1



1.2 Genetic algorithm

The most common use of GA is to generate a high-quality, or very rarely an
optimal solution to optimization and search problems by utilizing biologically
inspired operators such as selection, crossover and mutation. For a long time,
it was quite common to use a simple GS (Grid Search) for the tuning of neural
network hyperparameters. However, this approach may not be feasible when one
is not fully confident which hyperparameter space to set for the GS. When using
a GA, one can set a more broad hyperparameter space while not prolonging the
search time, that is if we were to compare GS and GA execution time.

2 Proposed algorithm

Main challenges to solve while coming up with a GA for CNN are species (chro-
mosome) representation and crossover.

2.1 Species Representation (Encoding)

The way in which to encode species lays out the path for how an algorithm
will handle the key evolutionary processes of selection, crossover, and mutation.
Any encoding will fall into one of two categories, direct or indirect. [Hei20] I
took a closer look on two direct encodings (binary and graph), and thought
about a custom indirect encoding. Ultimately, I chose an implementation using
indirect encoding.

2.1.1 Binary encoding

When it comes to GA species representations, by far the most used one is bi-
nary encoding. With this data structure, one can easily perform the needed
evolution operations such as crossover and mutation. However, implementing
binary encoding representation for neural network, especially when using mul-
tiple hyperparameters, might not be the best approach as long bit codes may
require additional overhead and be harder to debug.

2.1.2 Graph

While a graph representation would make the most sense for representing neural
networks, upon further research, to make this kind of representation work would
take more effort. One of the main benefits this representation could provide is
an often phenomenon of ”dying” ReLU units while training neural networks.
With this approach, it’s more likely that during crossover, an event would occur
in which one of the species would get some of it’s ”dead” ReLUs swapped or
mutated, along with it’s connections and produce a truly advanced specimen.

2



2.1.3 Custom data structure

Custom indirect encoding in a form of a data structure introduced a benefit of
not having to take into account encoding the weights and connections, just the
architecture and hyperparameters.

In figure 1 we can see the structure of a chromosome, where:

• n cnn combos stands for the number of combinations of CNN layers.

• cnn layers (combinations) contain the number of layers (n cnn layers),
layers themselves represented by number of neurons and their encoded
activations, and possible dropout regularization layer.

• dense layer with n neurons number of neurons and an encoded activa-
tion.

• dense dropout possible dropout for the previous dense layer, on signifies
whether to use this this dropout layer and value is the dropout rate.

Figure 1: Chromosome structure.

2.2 Crossover

There are three types of crossover operations I took into consideration - sin-
gle point, two point and uniform. Due to the nature of chosen chromosome
structure, the most fitting operation is single point crossover.

For two point crossover there are cases where could not be used, for instance,
if a generated chromosome has only one convolutional layer and single dense
layer, which is the most simple chromosome that can be generated, they are
still desirable for crossover and there’s only one crossover point available.

Uniform crossover would make the least sense, since the crossover would take
additional overhead as the depths of CNNs may vary by multiple layers.

3



3 Implementation

The project was implemented in Python using libraries such as Keras, Tensor-
flow and Sklearn.

Key components of the GA implementation, as in any GA, is the chromosome
generation, fitness calculation, selection, crossover and mutation.

During the initial period of testing various parameters for the algorithms
were tried. Thanks to this testing, final parameters were selected that would
used for all the datasets. These can be seen in the table 1.

Parameter Value
Genetic algorithm

Generation size 32
New generation 1/2 Tournament + 1/2 New blood

Crossover Single point
Mutation 10%

Neural network
Epochs 20

Early stopping Patiance = 4
Optimizer Adadelta
Batch size 128

Table 1: Chosen GA and CNN parameters.

Figure 2: Visualized CNN chromosome structure.

4



3.1 Chromosome generation

Chromosome generation is implemented by simply assigning values from a pre-
defined range to the variables of chromosome structure described earlier. The
value ranges can be seen in the table 2 below.

Variable Value range
n cnn combos 1-2
n cnn layers 1-3

layers - n neurons 32-64
layers - activation 0-2

dropout - on 0-1
dropout - value 0.1-0.5

dense layer - n neurons 16-128
dense layer - activation 0-2

dense dropout - on 0-1
dense dropout - value 0.1-0.5

Table 2: Value ranges of a chromosome.
Note: Activation mapping: 0 - relu, 1 - elu, 2 - selu

3.2 Fitness calculation

The fitness function is very simple, after each evaluated specimen (neural net-
work), it’s fitness (accuracy) is pushed into a fitness array. Once all the species
are evaluated, generation fitness is calculated.

generationfitness =

len(fitness)−1∑
n=0

fitness[n]

3.3 Tournament selection

Selection method used is tournament which compares defined number of species,
in this case a square root of population, and selects a winner (best accuracy).
The process is repeated until we have selected a sufficient number of specimen
for crossover.

3.4 Single point crossover

When it comes to crossover, only the layers (convolutional and dropout) are
taken into account. These layers are extracted into a support array. After ex-
traction, a crossover point is randomly selected from the range of:

< 1, min(len(support array parent a), len(support array parent b)) )

Consequently, the crossover is executed by two specimen exchanging the lat-
ter portion of their chromosomes, followed by their reconstruction.

5



3.5 Mutation

The probability of mutation is set to 10%, which may seem to be high, but after
initial testing and due to the fact that there are less epochs, it needed to be a
bit more drastic. Naturally, all of the values in the chromosome structure can
be mutated. The values that the individual parts of chromosomes can mutate
to are according to the value ranges in the table 2 above.

4 Testing and monitoring

Testing and monitoring were split into two different categories since each cate-
gory has it’s own distinctive indicators of success.

4.1 Convolutional neural networks

In order to assure quality of CNN classifications, common methods such as cross
validation. The data was split into train, test and validation sets. Next, metrics
such as Precision, Recall, Fscore and Support of each class were monitored.

Figure 3: Precision, Recall, Fscore and Support of each class.

Finally, the last metric which also helped a lot, especially with visualising
possible biases and problems of classifying specific classes, was a confusion ma-
trix.

Figure 4: Confusion matrix.

6



4.2 Genetic algorithm

In addition to monitoring the fitness of species and generations, multiple execu-
tion time outputs were generated to ensure that the whole GA pipeline worked
correctly. That being said, the evolution of fitness over the generations is still
the single most important indicator, that the GA is working correctly. The most
recurring fitness development can be seen in figure 5.

Figure 5: Fitness evolution on CIFAR-100 (fine) dataset.

5 Results

During the effort of achieving the best result on the most difficult task, that
is CIFAR-100 (fine), after the evolution finished, the best specimen was se-
lected for further training and would be stopped by Early stopping. This process
managed to increase the accuracy to 48.72% and was trained for addi-
tional 34 epochs. The other tasks such as MNIST, FASHION-MNIST and
CIFAR-10 were more trivial, since a majority of reasonable CNN models are
already able to achieve very good results on them. However, the GA algorithm
proves to be most useful when one needs to tackle multiple small problems. It
may relieve a lot of work and in some cases, the final model could often be a
good enough solution. The results of the implementation and their comparison
similar implementations are available in next paragraph and comparison to the
state-of-the-art networks can be seen in the table 3.

7



Dataset My Genetic algorithm State-of-the-art network
MNIST 98-99% 99%+

FASHION-MNIST 98-99% 99%+
CIFAR-10 75% 99.37%

CIFAR-100 (fine) 48.72% 93.51%

Table 3: Comparison of My Genetic algorithm and State-of-the-art networks

Comparison of CIFAR-10 results with similar implementations:

• Evolving Deep Neural Networks [Mii+17] (average network)

- After 120 epochs reached 20% error

- After 300 epochs reached 7.3% error

• Scalable Bayesian Optimization Using Deep Neural Networks [Sno+15]
(best network)

- After 120 epochs converged to 6.2% error

- At 12 epochs already had only about 20% error

• My Genetic algorithm (best network)

- After 20 epochs reached around 25% error

From my point of view the concept of using GAs to generate CNNs has a lot
of potential. While it is true that it may be limited by computational resources,
for some use cases, it may be a completely valid approach. The shortcomings
of my implementation are mainly not using more hyperparameters and regular-
ization such as l1 and l2, as well as not having more diverse hyperparameter
value ranges which was due to my limited computational resources.

Installation and execution

In order to run the program, the following packages need to be installed:

• tensorflow or tensorflow-gpu

• keras

• keras-preprocessing (downloads datasets)

• numpy

• sklearn

In order to run the program on GPUs, a custom CUDA installation is re-
quired based on graphics card in use.

After the program is runnable, depending on the dataset, the constants
(except for number of epochs and batch size) need to be adjusted:

8



Figure 6: Constants to be adjusted depending on the dataset.

References

[SM02] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Net-
works through Augmenting Topologies”. In: Evolutionary Computa-
tion 10 (2002).

[Sno+15] Jasper Snoek et al. Scalable Bayesian Optimization Using Deep Neu-
ral Networks. 2015. arXiv: 1502.05700 [stat.ML].

[Mii+17] Risto Miikkulainen et al. “Evolving Deep Neural Networks”. In:
CoRR abs/1703.00548 (2017). arXiv: 1703.00548. url: http://
arxiv.org/abs/1703.00548.

[Hei20] Hunter Heidenreich. NEAT: An Awesome Approach to NeuroEvo-
lution. 2020. url: https://towardsdatascience.com/neat-an-
awesome- approach- to- neuroevolution- 3eca5cc7930f (visited
on 09/30/2010).

9


